
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 3: Expander Graphs and PCP Theorem Proof Overview
Oct. 5, 2005

Lecturer: Venkatesan Guruswami Scribe: Matt Cary

1 Key Expander Graph Lemmas
Recall in last lecture that we defined a (n, d, λ)-expander to be a d-regular n-vertex undirected
graph with second eigenvalue λ. We also defined the edge expansion of a graph G with vertex set
V to be

φ(G) = min
S⊂V

|S|≤n/2

|E(S, S)|
|S|

,

where E(S, S) is the set of edges between a vertex set S and its complement.
The following lemma shows that the eigenvalue formulation of an expander is essentially equiv-

alent to edge expansion.

Lemma 1.1. Let G be a (n, d, λ) expander. Then

φ(G) ≥ (d− λ)/2.

Remark 1.2. In the other, harder, direction, it is possible to show that φ(G) ≤
√

2d(d− λ). For
our purposes of constructing and using expanders, the easier direction shown in this lemma is
enough.

Proof. Let V and E be the vertex and edge sets of G. Let S ⊂ V with |S| ≤ n/2. We will set
up a vector x that is similar to the characteristic vector of S, but perpendicular to

−→
1 . Then by

the Rayleigh coefficient formulation of λ, we have that ‖Ax‖ ≤ λ‖x‖, where A = A(G) is the
adjacency matrix of G.

Accordingly, we define x by

xv =

{
−|S| if v ∈ S
|S| if v ∈ S

,

and you can confirm that
∑

xv = 0 so that x ⊥ −→
1 . Now combining the Raleigh coefficient with

the fact that 〈Ax, x〉 ≤ ‖Ax‖ · ‖x‖ we get

〈Ax, x〉 ≤ λ‖x‖2.

1

Note that (Ax)u =
∑

(u,v)∈E xv, so that as A is symmetric

〈Ax, x〉 =
∑

u

xu

∑
(u,v)∈E

xv

= 2
∑

(u,v)∈E

xuxv

= 2|E(S, S)| ·
(
−|S| · |S|

)
+

(
d|S| − E(S, S)

)
|S|2 +

(
d|S| − E(S, S)

)
|S|2

where in the last two terms we count the number of edges wholly in S and S, respectively: there are
d|S| edge originating in S, minus those that cross over to S, cut in half as we have double counted.
We then simplify by noting that |S| + |S| = n and (|S|2 + 2|S||S| + |S|2 = (|S| + |S|)2 = n2 to
get

= d|S||S|n− |E(S, S)|n2.

Hence as 〈Ax, x〉 ≤ λ‖x‖2 and ‖x‖2 = |S||S|2 + |S||S|2 = |S||S|n, we can say

d|S||S|n− |E(S, S)|n2 ≤ λ|S||S|n

implying

|E(S, S)| ≥ d− λ

n
|S||S|

which shows

|E(S, S)|
|S|

≥ d− λ

2

as |S|/n ≥ 1/2 by our assumption on S.

Suppose we take a walk of length t from a random vertex v in G, as shown in Figure 1, and are
interested in the probability that the entire walk takes place within the set B of size βn. If each
vertex in the walk were picked independently, the probability would be βt. The next lemma shows
that even when the vertices are taken from a walk, in a good expander we are not that far off from
independent vertex choices. This illustrates why expanders are so useful: structures that should
be very dependent, such as walks, look very close to independent. We will not give the proof of
this lemma. We will prove a different (easier) result concerning random walks in expanders in
Lemma 3.1, and later use it when proving the PCP theorem.

Lemma 1.3. Let G be a (n, d, λ)-expander, and B ⊂ V (G) a set of size βn. Then the probability
that a t step walk starting from a vertex v never leaves B is at most√

β2 +

(
λ

d

)2

(1− β2)

t

,

where the probability is taken over the uniform choice of v as well as the steps in the walk.

2

G
B

v

Figure 1: Hitting a set B during a walk in a graph G. Here the walk only intersects B; Lemma 1.3
bounds the probability that the entire walk starts and remains inside B.

Remark 1.4. Note that as λ → 0, the probability approaches βt as our intuition about independent
vertex choices suggests. Also, if β = 1 − ε for ε → 0, then the probability is at most (1 − (1 −
λ2/d2)(1− β2))t/2 ≤ 1−O(tε), or in other words, a t-step random walk has probability Ω(tε) of
hitting a set of density ε, for small ε. This fact will later be appealed to sketch the basic intuition
behind Dinur’s proof.

2 Constructions of Explicit Expanders
In case you are starting to wonder if such marvelous objects as expanders can exist at all, let alone
with interesting parameters, we survey couple of constructions that show that some constant-degree
regular graphs exist with good expansion and they can be described very explicitly.

2.1 The Margulis/Gaber-Galil Expander
We construct an n2 vertex graph G whose vertex set is Zn × Zn, where Zn is the ring of integers
modulo n. Given a vertex v = (x, y), we connect it to the following vertices:

(x + 2y, y) (x, 2x + y)
(x + 2y + 1) (x, 2x + y + 1)

,

where all operations are done modulo n. We also add the edges corresponding to the inverse
transformations. This is then an 8-regular undirected graph, where there may be self loops or
multiedges, depending on n. One can prove that for this graph λ ≤ 5

√
2 < 8.

3

∞

Figure 2: The LPS Expander

2.2 The Lubotzky-Phillips-Sarnak Expander
The construction presented here is much simplified from the original construction. Let V = Zp ∪
{∞}, where p is prime. We view V as a p-element field defined by addition and multiplication
modulo p, where we extend the multiplicative inverse by defining 0−1 to be the special point ∞,
and ∞ + x = ∞ for all x ∈ V . Given any vertex x, connect it to x + 1, x − 1 and x−1. That’s
it! This gives a 3-regular graph with second largest eigenvalue λ ≤ λ0 < 3 for some absolute
constant λ0. The structure of the graph as shown in Figure 2. The graph is a cycle with a matching
between the edges. Note that the extra point with a self-loop that is introduced by the point ∞
can be removed along with 0, and 1 connected to p − 1 without much disturbing the expansion.
Actually since 1 and p−1 also have self loops for their inverses (instead of matching edges, though
this isn’t reflected in the figure!), we can remove them, and simply have a simple graph that is a
cycle on p− 3 nodes with a matching.

3 A Final Expander Lemma
In this section we prove a version of Lemma 1.3 that will be used in the proof of the PCP theorem.
Here the set of interest will be an edge set F ⊂ E, we consider a walk that starts along a particular
edge in F , and consider the chance that the edge used in the tth step is also in F .

Lemma 3.1. Let G be an (n, d, λ)-expander and F ⊂ E(G) = E. Then the probability that a
random walk, starting in the zero-th step from a random edge in F , passes through F on its tth step
is bounded by

|F |
|E|

+

(
λ

d

)t−1

.

4

Proof. To prove this lemma we will use a very useful technique essentially that used for random
walks on Markov chains. Let x be the distribution on the vertices of G for the start of the walk.
That is, xv is the probability that our walk begins at vertex v. Consider the first step in the random
walk. The probability that this ends at a vertex u is the sum, over all edges (v, u), of the probability
that we were on v before this step, times the probability we chose the edge (v, u) out of all the other
edges leaving v. As G is d-regular, v has exactly d edges leaving it, the chance we take the one
heading to u is just 1/d (we will ignore the possibilities of multi-edges—as you will see, the final
expression we actually use takes this into account). Hence if x′ is the distribution on the vertices
of G after the first step,

x′u =
∑

(v,u)∈E

xv/d.

Now let A be the adjacency matrix of G. Then the row Au has ones in exactly the columns
(v, u) where there is an edge (v, u) in G. Hence we can write the above expression compactly as
x′ = Ax/d. Note that in this case, multi-edges are handled correctly, for if there is a multi-edge
of multiplicity m between v and u, the corresponding entry in A will be m, giving the probability
we take that edge from v as m/d as desired. This notation is so convenient we will normalize by
defining Ã = A/d so that simply

x′ = Ãx.

If we take i steps, the distribution we reach is given by Ãix. Let P be the probability we’re
interested in, which is that of traversing an edge of F in the tth step. Suppose w is the vertex we
arrive at after the (t − 1)th step. Let yw be the number of edges of F incident on w, divided by d.
Then P =

∑
w∈V (Ãi−1x)wyw, where x is the initial distribution.

To calculate x, we pick an edge in F , then pick one of the endpoints of that edge to start on.
If v has k edges of F incident on it, we have a k/|F | chance to pick that edge, then a further 1/2
chance to pick v. Now, yw is the same quantity k, but divided by d instead of 2|F |. Hence, we can
write that yw = xw · 2|F |/d. Without calculating x further, we now write

P =
∑
w∈V

(Ãi−1x)wyw

=
∑

(Ãi−1x)wxw ·
2|F |
d

=
2|F |
d
〈Ãi−1x, x〉.

To finish our calculation, we rely on an as-yet unused property of G: its regularity. As each vertex
in G has exactly d neighbors, each row in Ã sums to one. Hence if x‖ is the uniform distribution
on G—x

‖
v = 1/n—then Ãx‖ = x‖. As x is a probability distribution, we can decompose it as

x = x‖ + x⊥ with 〈x‖, x⊥〉 = 0. Then by linearity and the fact just mentioned,

Ãi−1x = Ãi−1x‖ + Ãi−1x⊥

= x‖ + Ãi−1x⊥.

5

Hence,

〈Ãi−1x, x〉 = 〈Ãi−1x‖, x〉+ 〈Ãi−1x⊥, x〉
= 〈x‖, x〉+ 〈Ãi−1x⊥, x〉
= ‖x‖‖2 + 〈Ãi−1x⊥, x〉

=
1

n
+ 〈Ãi−1x⊥, x〉

≤ 1

n
+ ‖Ãi−1x⊥‖ · ‖x‖

≤ 1

n
+

(
λ

d

)i−1

‖x⊥‖ · ‖x‖

≤ 1

n
+

(
λ

d

)i−1

‖x‖2,

as ‖x⊥‖ ≤ ‖x‖. Now notice as the entries of x are positive that ‖x‖2 =
∑

x2
v ≤ max xv

∑
xv =

max xv, as
∑

xv = 1, x being a probability distribution. The maximum xv is achieved when all
edges incident to v are in F , and in that case xv = d/(2|F |), so the calculation above continues

≤ 1

n
+

(
λ

d

)i−1
d

2|F |
.

Hence

P ≤ 2|F |
dn

+

(
λ

d

)i−1

which finishes the proof as |E| = nd/2.

4 Overview of the GAP-3SAT Hardness Proof
In this section we give an overview of the proof of hardness for GAP-3SAT that will occupy us
over the next several lectures. We will actually prove the hardness of a problem that can be seen as
a generalization of graph optimization problems, which has an easy reduction to GAP-3SAT.

Definition 4.1. A constraint graph is given by an alphabet Σ, a graph G = (V, E) and a set of
constraints C = {ce ⊆ Σ× Σ | e ∈ E}. A labeling on G is an assignment σ : V → Σ of elements
from Σ to each vertex of G. A labeling σ satisfies an edge (u, v) ∈ E if

(
σ(u), σ(v)

)
∈ ce (for

each edge a canonical orientation u → v is assumed).

6

The optimization problem for a constraint graph is to find a labeling that maximizes the number
of satisfied edges. The gap problem for constraint graphs with gap parameter ε, 0 < ε ≤ 1, is the
following: given a constraint graph, such that either (i) there is a labeling that satisfies all the
edges, or (ii) every labeling fails to satisfy at least a fraction ε of edges, determine which of the
cases (i) or (ii) holds.

Remark 4.2. Many graph problems can be expressed as a constraint graph problem. For example,
given a graph G to k-color, let Σ be a k-element alphabet, and define the set of constraints C as
{(a, b)}a 6=b. The optimization problem is to find a coloring for G that maximizes the number of
valid edges, those whose endpoints are different colors.

Note that the hardness of the decision problem for constraint graphs implies the hardness of the
gap problem with gap parameter 1/|E|. We will amplify this hardness in a series of stages, where
at each stage we take a constraint graph Gi over alphabet Σ, and produce Gi+1 also over alphabet
Σ, where the number of unsatisfied edges in Gi+1 is at least twice the number in Gi. If the size
of Gi+1 increases polynomially over the size of Gi, this will not be enough, as we will apply this
log |E| times. Hence we must also insure that the size of Gi+1 is at most a constant factor larger
than that of Gi, so that the size of Glog |E| is a polynomial in the size of G1.

Each stage will be split into 4 steps. Let gap(G) denote the minimum fraction of unsatisfied
edges over all labelings of G.

Sparsification (degree-reduce): Gi → G(1), a d-regular graph where gap(G
(1)
i) ≥ β1gap(Gi),

with integer d, β1 > 0 being absolute constants. This step is achieved by placing a (d− 1)-
regular expander at each vertex of Gi with number of vertices of the j’th expander being
equal to the degree of vertex j.

Expanderize: G(1) → G(2), that is a good expander. We can achieve this by unioning G(1) with
an expander, and apply Lemma 3.6 of the previous lecture. This step will also reduce the
gap by an absolute constant factor.

Amplify the Gap: G(2) → G(3) by powering, which will increase gap(G(2)) a lot, more than
making up for the loss of the other steps. This will also increase Σ, where we want the final
graph to be over the same alphabet as the original graph. This step was the main innovation
of Dinur.

Composition (alphabet-reduce): G(3) → Gi+1 by reducing the alphabet back to the original Σ.

In addition, each step will only increase the size of the graph by a constant factor.
It is worth pointing out that expanders are used in each of the first three steps above!

7

	Key Expander Graph Lemmas
	Constructions of Explicit Expanders
	The Margulis/Gaber-Galil Expander
	The Lubotzky-Phillips-Sarnak Expander

	A Final Expander Lemma
	Overview of the Gap-3SAT Hardness Proof

