
CSE 533: Error-Correcting Codes (Autumn 2006)

Lecture 11: Decoding Algorithms for Justesen Code
11/3/2006

Lecturer: Venkatesan Guruswami Scribe: Dang-Trinh Huynh-Ngoc

In the first part of this lecture we continue to discuss polynomial-time decoding algorithms
for Reed-Solomon (RS) code. In the second part, we will talk about polynomial-time decoding
algorithms for Justesen code.

1 Error & Erasure Decoding of RS Code
For an RS [n, k, d = n − k + 1]q code, we have shown a decoding algorithm that can correct
from s < d erasures and [WB] decoding algorithm that can correct up to e < d/2 errors. Another
interesting case is when the channel noise consists of both erasures and errors.

Theorem 1.1. Given an RS [n, k, d = n − k + 1]q code, one can decode in polynomial time from
a combination of any e errors and s erasures, provided that 2e + s < d.

Proof. Let y be the received codeword, and S̄ be the unerased positions in y. With notice that
the code obtained from the given RS code projected on S̄ is an RS [n − s, k, n − s − k + 1]q
code, we can correct e errors in y by running [WB] error decoding algorithm. This works because
2e < d− s = n− k− s + 1. Then we correct the remaining s erasures in y by running the erasure
decoding algorithm.

2 Decoding Algorithms for Justesen Code
This section addresses the issue of error decoding for Justesen code, which is an explicit binary
asymptotically good code. The question is up to how much fraction of worst-case errors (which is
the codeword lengths) can we correct? Can it be δ/2, where δ is the relative distance of the code,
which is the best we can hope for?

This section consists of two parts. The first part gives an algorithm to decode Justesen code
from up to 0 < ρ < δ/4 fraction of worst-case errors. The second part will improve the algorithm
to achieve ρ < δ/2.

First of all is some notation. We consider a Justesen code which is a concatenated code of
an outer RS code C of length n over F2m and a family of inner binary linear codes. For the
sake of discussion, we assume all the inner codes are the same and refer to them as Cin, but
the following discussion can be generalized to the case of different inner codes. Let R,D and
r, d be the rates and distances of C and Cin, respectively. We denote the codewords in C as
(f(α0), f(α1), . . . , f(αn−1)) and codewords in the Justesen code C � Cin as

(Cin(f(α0)), Cin(f(α1)), . . . , Cin(f(αn−1))).

1

Finnaly, let Z be the received codeword. We partition Z into n blocks of length m/r: Z =
z0 . . . zn−1.

2.1 Decoding from up to < Dd/4 errors
Since Justesen code is the concatenation code of an RS code and linear binary codes with known
decoding algorithms, a natural decoding algorithm for Justesen code would be one that reverses
the process of concatenation. Below we precisely describe the algorithm.

Algorithm

1. Decode each zi to yi ∈ F2m where yi minimizes ∆(Cin(yi), zi), where ties are broken arbi-
trarily.
This step takes O(n2m) = O(n2) time.

2. Decode ~y = (y0, . . . , yn−1) ∈ Fn
2m using [WB] decoding algorithms for RS code.

Theorem 2.1. The algorithm corrects any error pattern of weight less than Dd/4.

Proof. Suppose (f(α0), . . . , f(αn−1)) was the actual message sent. Decoding fails only if yi 6=
f(αi) for at least D/2 values of i. For each such i, since yi 6= f(αi), we must have ∆(Cin(f(αi)), zi) ≥
d/2. Thus the decoding fails only if there are more than Dd/4 errors.

2.2 Decoding from up to half the distance < Dd/2 errors
We now improve the ”natural algorithm” in the last part so that we can correct more errors. By
a closer look, we see that Step 1 of the algorithm can give more information to Step 2 besides ~y.
The closer Cin(yi) is to zi, the more certain we have about the correctness of yi in the decoded
codeword. It would be better if we can somehow make use of this information. This gives rise to
the following algorithm due to [Forney ’66]. One step in the algorithm is randomized, but we will
derandomize it later.

Generalized Minimum Distance (GMD) Decoding Algorithm

1. Decode zi to yi as before.
Set wi = min(∆(Cin(yi), zi), d/2).
Let ~y = (y0, . . . , yn−1).

2. With probability 2wi

d
declare yi to be an erasure (set yi =?).

3. Decode (now with erasure) ~y using the error & erasure decoding algorithm for RS code.

The following theorem characterizes ~y so that it can be input to Step 3 in the algorithm.

Theorem 2.2. E[2ē + s̄] < D, where ē and s̄ are the number of errors and erasures in ~y, respec-
tively.

2

Proof. Let Y err
i and Y ers

i be indicators for the event of error and erasure for yi. It suffices that we
prove E[2Y err

i +Y ers
i] ≤ 2ei

d
, where ei = ∆(Cin(f(αi)), zi) is the number of errors in zi and hence∑

ei is the weight of error pattern, which is less than Dd/2.
There are two cases:

- Case 1: f(αi) = yi. Then there is no error at position i, hence E[Y err
i] = Pr[Y err

i = 1] = 0.
Also, since wi ≤ ∆(Cin(yi), zi) = ∆(Cin(f(αi)), zi) = ei, we have E[Y ers

i] = 2wi

d
≤ 2ei

d
.

- Case 2: f(αi) 6= yi. Then there is an error at position i. We have E[Y ers
i] = Pr[Y ers

i = 1] =
2wi

d
, and E[Y err

i] = Pr[Y err
i = 1] = 1− Pr[Y ers

i = 1] = 1− 2wi

d
. Then E[2Y err

i + Y ers
i] =

2− 2wi

d
≤ 2ei

d
. The last inequality comes from wi + ei ≥ d, and this comes from

* If wi = ∆(Cin(yi), zi), then since ei = ∆(Cin(f(αi)), zi), by triangle inequality, wi +
ei ≥ ∆(Cin(yi), Cin(f(αi))) ≥ d.

* If wi = d/2 and wi ≤ ∆(Cin(yi), zi), then by the way we choose yi at Step 1 in
the algorithm, ∆(Cin(yi), zi) ≤ ∆(Cin(f(αi)), zi) = ei. Thus ei ≥ d/2, therefore
wi + ei ≥ d.

Next we show how to derandomize Step 2. Since the above theorem does not require that the
events of two different y′is to be declared as erasures to be independent, we can replace Step 2 with
the following new step

2’. Pick θ uniformly in [0, 1].
For each i, if θ < 2wi

d
, then declare yi as erasure.

It is easy to see that each yi is still declared as erasure with probability 2wi

d
. Let Q = {0, 1} ∪

{2w0

d
, . . . , 2wn−1

d
}. Since each wi is an integer, it is easy to see that |Q| ≤ d + 1. Denote the

element in Q by qi for 1 ≤ i ≤ |Q|, where qi < qj for any i < j. Then we can see that every
θ ∈ [qi, qi+1) in Step 2’ produces the same ~y. So now we are ready to derandomize the algorithm.

Deterministic GMD Algorithm

1. As before.
Set Q = {0, 1} ∪ {2w0

d
, . . . , 2wn−1

d
}.

2. For each θ ∈ Q:

(a) For each i, if θ < 2wi

d
, then declare yi as erasure.

(b) Decode ~y using the error & erasure decoding algorithm for RS code.
Let Jθ be the output codeword (if any).

3. Output the Jθ that minimizes ∆(Jθ, Z).

(To be continue in the next lecture...)

3

	Error & Erasure Decoding of RS Code
	Decoding Algorithms for Justesen Code
	Decoding from up to <Dd/4 errors
	Decoding from up to half the distance <Dd/2 errors

