CSE 533: Error-Correcting Codes (Autumn 2006)

Lecture 12: Near-Capacity Polynomial-Time Codes for BS(
11/08/2006
Lecturer: Venkatesan Guruswami Scribe: Alexander Jaffe

\J

After recapping last lecture, we return to studying the Birdymmetric Channel, in order to
present a code that nearly achieves Shannon’s capacity. iNN@s@ begin to discuss expander-
based codes in the Hamming environment, which are a patlgutombinatorial (rather than
geometric or algebraic) approach to good codes.

1 Review of Last Lecture
Last time, we discussed:

e The Welch-Berlekamp decoding algorithm for Reed-Solonumtes.

¢ A simple decoding algorithm for concatenated codes, wharects< % errors for the
Justesen code.

e A stronger, randomized decoding algorithm for the Justesee due to [Forney '66]. This
Generalized Minimum Distance (GMD) algorithm can correstér thandTD errors.

e A fully functional derandomized version of GMD.

Derandomized GMD can generally be summarized as followsch Eaner blockz; is en-
coded agy;, with some weightw; representing the likelihood that the block was decodedrinco
rectly. For sortedv;, < w;, < ...w;,, we erase all blocks past some thresh®ldeaving only
Wiy, Wiy, - - ., w;; 10 be decoded. We try this for all distinguishing value$othat is, for all possi-
ble values ofj. Picking the;j that minimizes the distance between that codeword and tesves
codeword gets the most likely codeword; this is guarantedstcorrect for fewer thaﬁf errors.
Note that this requires running the decoding algorithfatimes, in order to try at most every pos-
sible weight threshold (< w; < d/2). Thus the overall running time 8(d - T'ime gs—_pecoding)-

2 Background and Motivation

For this lecture, we will concentrate on the relationshipmeen the rate of the code and the fraction
of errors we can correct. This is a more direct study of thdityuaf a code than our our previous
discussions, which compared relative distance and rate.

We previously saw that Reed-Solomon lets us correct, ferkaind distance = 1 — R, up to
4 — o(1) errors. We know that it is impossible to correct more thar &abde’s distance in errors

and still return a unique answer. We will relax this uniqussieequirement later in the course, but
for our current consideration, Reed-Solomon is in somees#resbest we can do. Unfortunately,
the alphabet size is very large, and impractical for manppses.

In the binary case, we have seen that it is possible to caupetd a% fraction of errors. This
was achieved by concatenating an outer code of distAngi¢h an inner code of distan@eand the
best possible ratel — H(6)), (as given by the GV bound). From the Zyablov bound, thisexets
an overall rate ofR = (1 — A)(1 — H(0)).

If our goal is to correct a maximal number of errors, then we sat the parameters of the
above concatenated code accordingly. Letting % —ec¢andA = 1 — ¢ allows us to correct a
1 — ¢ fraction of errors. However, the rate of such a code is 6t{ly*), which is not particularly
desirable. In fact, this does not meet the best bound on eatsuth high correctability, namely
Q(g?), given by the GV bound.

In this lecture, we take a somewhat different approach. é&dtian maximizing the number
of errors we can correct, our goal will be to correct only a kmamber of errors with high
probability, but to achieve the best possible rate whilenga@io. Assume that we wish to correct a
fraction~ of errors, withy — 0. Then we will construct a concatenated code with outer dégta
A = 2,/7, and inner distancé = /4. From the Zyablov bound, the rate is roughly-2,/7)(1 -

Vrlog 1) <1—2/7log= =1-0(,/vlog>). Note that this rate approaches haspproaches

0; thus we come arbitrarily close to capacity if we are wilto correct a sufficiently small fraction
of errors. We will formalize this more after we describe tede in detail.

3 A Concatenated Code over BS¢

In this section, we prove the following main theorem.

1
€

Theorem 3.1. There exist codes constructible in poly(n)2P(=) time that are within ¢ of capacity
of BSC,, which can be encoded in poly(%) time, and decoded in poly(n)2PW(2) time,

For the most part, this resolves the question posed by Shanmbeorem. However, some
exceptions (instances of further work) will be given.

3.1 Overview of the Code

We construct another example of an concatenated code. iff@swe will use both an inner and
outer code with high rate, in order to ensure that the oveaale achieves a rate that is as high as
possible.

The Shannon Theorem states that capacity for reliable conwation over BSGis al — H(p)
fractional rate. Thus far, fod < p < 1, we have shown how to communicate on BS€liably
with positive rate and polynomial time encoding and decgdiwe would now like to be able to
achieve maximally good rate, though it means we will be chgpabcorrecting a much smaller
fraction of errors.

We will now give ratel — H(p) — ¢ codes, for any arbitrary. These codes will be explicit,
featuring polynomial-time encoding and decoding algon$t¥y and D, which satisfy the follow-

ing.

Prngise of BSG [D(E(m) + nOiS@ # TZ] < 2~ 0(n)

We call this family of codeC* — we will at times abuse notation and refer to a particular
member of the family ag*. We will show that the2=2(n) bounds holds, but truthfully any
negligible function on n (a function that approaches 0 fagtan any inverse polynomial on n)
would be sufficient. Such a bound on the probability of ersahie very definition of a good code
on channel BS(:

The code is due to [Forney 66]. We can push H(p) — ¢ arbitrarily close to the bound of
Shannon’s Theorem, so this code essentially resolves workaximizing rate over BSC

3.2 Construction

We start by considering the ideal inner code: a binary limeale of ratel — O(, /7 log %), where

~ is some functiony(¢). Such a code must exist, by the GV bound. We can think of treeasit
1 — C, for someC,, s.t. C;, — 0 asy — 0. This code has very large rate, but corrects a tiny
fraction of errors.

We could achieve much of this section by concatenating a fSeéaimon code with such a
good code found by search, but we do things somewhat difgrenorder to keep the alphabet
binary. Furthermore, though such a code would introdute ldss in rate, it would would correct
too few errors. Instead, we use the Justesen code at thelexgefor its good rate. The fact that
the Justesen code is itself a concatenation code will blewant here — we treat is a black box,
simply for its behavioral properties.

We now consider what properties the desired inner code dhmate. It must be close to
capacity itself, for concatenation can only decrease tte r@lhe rate of a concatenated code
is the product of the rates of the inner and outer cod€$,)should thus be & — H(0) — /7
binary linear code s.tPrnise ofgsg [MLD (Ci (m) + noise) # m] < 7. Here MLD is Maximum-
Likelihood Decoding, in which we pick the codeword that isshlikely to have been transmuted
to the received string under the error model. By the Shanf@moifiem, we know that such a code
exists. We can ensure such an error bound provided(p, v) > 7—12l0g(%). We are thus given an
indication of how large the block siZeshould be, since this drives down the error probability.

Suppose we can decode the inner code very reliably on,BB@n with high probability each
block is correct, independently from one another. At theepldvel, there may be a small number
of blocks that are incorrect, but the redundancy of the otele will almost certainly be able to
correct for these few.

Since we can construct such a gadg, it is natural to ask why we do not uég, to encode the
entire message as a single block. Such a code would be vetied, but we unfortunately know
of no way to perform the decoding in polynomial time (or to fswtth a code quickly, though this is
less important). Thus such a code is only feasible when usedatock of constant or logarithmic
size inn.

Cout
n-bit encoding

b-length block aee

Cin

b'-length block [X ¥] nb'b-length codeword

Figure 1. Encoding process 6f*

We search for an appropriat¢,, in the following way. Because a constarttas been chosen
for the dimension of’;,, any function ofb will only be an (potentially large) constant. We can
thus perform exhaustive search to find an optimal generastrixn We try each possible x ¢/
generator matrix. For each of these matrices, and eachgp®ssin-zera-length message:, we
consider the probability that. decodes to the zero-vector. By summing these error pratebjl
we can compute the total probability that a codeword altbsethe channel decodes to the wrong
codeword. We can then take the generator matrix that mimisizis probability.

3.3 Encoding and Decoding

Inner encoding is performed via the generator matrix, and thkes polynomial time in Maxi-
mum Likelihood Decoding (MLD) can be implemented?(*®) time, by encoding every possible
message with the generator matrix, and choosing the me#isaigeaps to the codeword closest
to our received bit string. Despite the exponential depeod®nb, this is still constant om. We
use the Justesen code as our outer code, initially encodéngnéssage using it. We then split the
codeword of the Justesen code imtth blocks of lengthh. We map each of these blocks via an
inner code to blocks of some length= ¢b. Our final codewords consist of the concatenation
of these inner codewords. Decodiafj simply consists of reversing this process: decoding each
block with the inner code, then decoding the concatenatidmase outputs with the outer code.

Decoding each block in step 1 takgd®") time, (technically a constant). The outer code, as
we know, decodes in time polynomial in Letn’ := %, the number of blocks. Note that our
overall block length isV = n't = n% Then the total running time of the decoding algorithm is
O(n')*2°0") 1+ poly(n) = 2°") 4-poly(n) = poly(n). Ignoring the constant inner code decoding
time, itis in fact possible to achieve an overall time thdiriear in n.

We also know that the concatenation code is linear becaubdmaer code is linear — when we

sum two codewords of the overall code we sum each pair of ioo@ewords independently, and
the same applies for scalar multiplication. Thas,= C,,;AC;, is an explicit, binary, linear code
ofrate(1-C,)(1 - H(p) —v) < 1— H(p) —2C,, with polynomial-time encoding and decoding.

Recall thatC;,, has optimal rate. Hence by increasing the block sjZgvith a corresponding
increase in the constant factor of the running time) we imetbe rate of the overall code. In fact,
for an arbitrarys, we can achieve rate — H(p) — ¢ in time poly(n)2P¥(/¢) | getting arbitrarily
close to capacity. For a giveraway from maximal rate, we can correct up to action of errors,
whenC,, < 5. v = ° will suffice.

It is worth noting that work continues on improving the camgtfactors in the inner decoding
algorithm’s running time. With some cleverness, it is pbksto construct the generator matrix
in time 2°¢*). However, as this is only a constant improvement, we willgminto detail on the
method here.

If we wish the error probability to approach 0, then we musédeour block length such
that all but ay fraction of the blocks are correct. However, to give oursslgome slack in the
computation, we will set so that we can correct onfy blocks.

The decoding algorithm for the overall code is stated explibelow.

Decodef):
1. RuncC;, decoder on each sequential block0lbits of s.
2. RunC,,; decoder on the concatenation of the outputs from step 1.

3. Output the result of step 2.

This simple procedure should be familiar from a previouscadenated code.

3.4 Reliability

We wish to prove that the probability of error for the code vesdndescribed is negligible im—
in particular we prove the stronger probability of erroRof2(.

Let us consider under what conditions the overall decodedyres an error. It is clear that
if the fraction of incorrectly decoded blocks is less tharthen the fraction of incorrect bits in
the input toC,,; is also less than. Thus the overal decoding algorithm decodes its input to an
incorrect codeword only if greater tharfraction of the blocks are decoded incorrectly@y;. By
the independence of each block and a union bound, the ptiapabithis event is:

n Ty n_’e / (Tym! _ (/b _ o-0(n)
Priemof < () < oy (G = (s =,

As intended. This probability serves as an upper bound oovberall probability of error. We
could potentially get a tighter expression by using a Chi¢éBaund, since the events are i.i.d.; the
bound above will suffice however.

Implementation Note: It is possible to push the exponediealendency ohout of the running
time and into the space requirements. This is accomplishgadcomputing a complete lookup

5

table for each possible input, mapping it to the correct wantd. This table would clearly have
size that is exponential in b, but would allow lookup(xb).

We have now proved the main theorem. It is still an open prolie construct a code that
approaches capacity with only a polynomial dependencyiarthe running time. However, what
we have constructed in this section is quite satisfactvig.dome sense solves Shannon’s problem
fully. Note that the key to this success is in fact concatenain the Reed-Solomon code: the only
outer code we have seen that has the necessary propergess liiee Justesen code, which itself
requires the Reed-Solomon code at its outer level.

4 Expander Codes

We now return to the Hamming domain. We will introduce codespired by a construction of
[Gallager 1960]. These will achieve positive rate and retadistance, with linear time decoding.

4.1 Sparse Parity Check Matrices

We take the parity check matrix view. A sparse parity-cheeitrm is one in which each column
has O(1) non-zero entries. In some cases, we might also edubtistraint that each row has O(1)
non-zero entries. The key feature of such matrices is theyt #nesparse: there are only O(n)
non-zero entries in total. This is powerful, because it igeneral possible to decode from a parity
check matrix in time proportional to its Hamming weight.

Gallager showed that when picking such matrices randomtyeasing sparsity pushes a code
arbitrarily close to the GV bound. In contrast, we will atignto deterministically construct codes
with such good rate, using a tool callexpander graphs. Using such graphs in the construction of
codes is a relatively new technique, dating back to 1996ea¢#uliest.

A parity check matrix has columns, andh — k£ rows. We can represent it alternatively as
afactor graph. This is a bipartite graph, with ‘variable’ nodes on the left sidd/(), each cor-
responding to one column, amd— k 'check’ nodes on the right{), each corresponding to one
row. We connect a vertek; with a vertexC; iff there is a 1 in entryj, i of the matrix. We can
thus think of the matrix as a non-traditional adjacency mdor the graph. (Each column and
row corresponds to a separate vertex, thus the matrix isynotnetrical.) Note that factor graphs
corresponding to sparse parity check matrices liawe edges in total.

The vertices ofC' are called check nodes for the following reason. Any codewsan be
'placed’ on the nodes df’, assigning each vertex the number 1 or 0. The check nodegttierce
a parity check, because each column node has an edge to gacbde that it is non-zero in.

If we can explicitly construct the graph described aboventive will be finished, because it is
equivalent to, and can be used as, a parity check matrix.ctnvige can reconstruct the generator
matrix from the parity check matrix i?(rn?) time, by computing a basis kernel for the parity check
matrix. This gives us both polynomial-time encoding andodiag.

4.2 Expander Graph Background

Definition 4.1. An (n,m, d, v, a)-expander isa bipartitegraph G = (L, R, E) st. |L| = n, |R| =
m, verticesin L have degree d, and VS C L st. |S| < yn, we havethat | N(S)| > ad|S].

The intuitive interpretation of an expander graph is thattieighborhood of any reasonably
small subset of vertices should be somewhat large. It is gsipte to achieve large expansian
for v greater than 1, sinceV(5)| < d|S|. Conversely, fory = 1, the maximal expansion of 1 is
always achievable, sind&/(S)| = d. However, we are really interested in the cases in between,
in particular for constan;l; < 7 < 1. If for some~ in this range we achieve = 1 — ¢, then this
graph is called a lossless expander, the best we can hope for.

For a long time, the best known explicit deterministic comstions of expanders achieved
only o = % Then, less than five years ago, it was shown that expand#rew 1 — ¢ could be
constructed explicitly. In general, we find that > 0, 9 p > 1,d,~ > 0 s.t. there exist explicit
(n, pn,d,~, a)-expanders. Thus, given an arbitrarily smalbne can pick parameters to construct
expanders with — ¢ expansion.

Next time we will state and prove the fact that for> % an expander graph will be a factor
graph corresponding to the parity check matrix for a goodecod will be a very simple and
explicit construction. In particular, we will discuss th@9b “Expander Codes” due to Sipser-
Spielman, and 2002’s “Randomness Conductors and Cori3tgree Lossless Expanders” by
Capalbo-Reingold-Vadhan-Wigderson.

	Review of Last Lecture
	Background and Motivation
	A Concatenated Code over BSCp
	Overview of the Code
	Construction
	Reliability

	Expander Codes
	Sparse Parity Check Matrices
	Expander Graph Background

