
CSE 533: Error-Correcting Codes (Autumn 2006)

Lecture 15 and 16: List Decoding
November 22, 2006

Lecturer: Atri Rudra and Venkatesan Guruswami Scribe: Jacob Nelson

1 List Decoding

Our(1−R)/2 bound came from the fact that we can’t uniquely decode a codeword that is a distance
of (1−R)/2 from two valid codewords. But there are many codewords outside the(1−R)/2
radius; we could uniquely decode many of them if we simply chose the nearest valid codeword
instead.

In higher dimensions, most of the ambient space is outside this radius.
We can do better by outputting alist of answers. In most cases, this list will be of size 1. This is

calledList Decoding, and was discovered independently by Elias and Wozencraft in the late 50’s.
More formally, we say that given a codeC, error bounde, and received wordy, we will output

all c ∈C such that∆(c,y) ≤ e.
In other words, we take a ball of certain radius around the received codeword and output all

the codewords that fall inside this ball. Maybe this doesn’tlet us decode arbitrary points, but for
typical probabilistic models, this will give us mostly unique codewords. Furthermore, outputting a
small list is better than failing with no information about why.

List decoding introduces a new parameterℓ, the maximum number of things to output in the
worst case. We would like it to be small. So for allp ∈ Σn,

|B(y, pn)∩C| ≤ ℓ.

Definition 1.1. A code C is called an (e, ℓ)-list-decodable if for all received code y,

|{c|∆′(c,y) ≤ e}| ≤ ℓ.

For “efficient” list decoding, we needℓ to be polynomial in length inC; that is, the worst case
list length must be polynomial.

Definition 1.2. The List Decoding Radius(LDR) is the largest e such that a code C is (e, ℓ)-list-
decodable for a polynomial ℓ.

Recall the Johnson bound over a fieldFq:

Jq(δ) =
q−1

q

(

1−
√

1− qδ
q−1

)

.

1

In the binary case, this is

J2(δ) =
1
2

(

1−
√

1−2δ
)

.

If e < Jq(δ), then the LDR must be≥ e/n.
Alphabet-free version:
The number of codewords is less thannd if e ≤ n −

√

n(n−d). Sinced ≤ n − k + 1 and
R = k/n, if the Hamming ball has radius at most 1−

√
R, the number of codewords is≤ nd.

1.1 List decoding and rate

Let Rq(p) be the largest rate for codes with LDRp.

Theorem 1.3.

Rℓ,q(p) ≥ 1−Hq(p)− 1
ℓ
.

Note. ℓ = O(1
ε), so the rate is≥ 1−Hq(p)− ε. (This is thelist decoding capacity.) As ℓ goes to

infinity, Rℓ,q goes to 1−Hq(p), so for large list sizes, we achieve capacity.

Proof Sketch. Pick a random codeC of lengthn.
What is the probability thatℓ+1 codewords lie in one ball of radiuspn? The probability that

one codeword lies in some Hamming ball is

Volq(Σ,e)

qn ,

so the probability thatℓ+1 do is

Volq(Σ,e)

qn ≤ q(Hq(p)−1)n(ℓ+1).

Let Nbad be the number of sets ofℓ+1 codewords that lie in some ball of radiuspn. Then

E (Nbad) ≤ qn
((

M
ℓ+1

)

q(Hq(p)−1)(ℓ+1)n
)

.

If we choose the rate
M = q(1−Hq(p)− 1

ℓ)n,

then
E (Nbad) < 1.

So there exists a code withNbad< 1, and since it’s an integer quantity,Nbadmust be 0. There is no
Hamming ball of radius pn with more than polynomially many codewords.

Theorem 1.4. For every a and p|0 < p < 1−1/q (noise) and ℓ ≥ 1, there exists a family of q-ary
codes of rate R that are (p,L)-list-decodable for R = 1−Hq(p)− 1

L+1 −O(1).

2

Note. As L grows bigger and bigger, we are able to achieve a rate of 1−H(p), achieveing Shan-
non’s result.

Proof Sketch. We will use random coding.
We have an ambient space ofqn, with alphabetΣ = {0,1, . . . ,q−1}.
PickM codewordsc1,c2, . . . ,cM, where eachci is a uniformly-randomly-chosen element ofΣn.

(This is the same as we did for the proof of Shannon’s theorem.) SoM = qRn.
A bad event is defined as follows: there exists somey ∈ Σn and some subsetS ⊂ L of sizeL+1

such thatB(y, pn) ≥ S.
Fix y,S.
If B(y, pn) ≥ S, then the entire setS lies in close proximity toy.
What’s the probability of this? By our work on estimating balls,

Pr[B(y, pn) ≥ S] = y

(|B(y, pn)|
qn

)ℓ+1

≤
(

qHq(p)n

qn

)ℓ+1

for a fixedy ∈ S.
So

Pr[Bad event] = Pr[C is not(p,L) list decodable]

≤ qn
(

M
C +1

)

(

qHq(p)n

qn

)ℓ+1

≤ qn (qRn)ℓ+1

(

qHq(p)n

qn

)ℓ+1

and collecting terms,

= q(ℓ+1)n(R+Hq(p)− ℓ
ℓ+1)

= q(ℓ+1)n(R−(1−Hq(p)− ℓ
ℓ+1))

< 1 if R = 1−Hq(p)− 1
ℓ+1

−O(1).

If we have a linear code, then the codewords will not all be independent. But the chance of a
collision is

(M
2

)

· 1
qn , and we can just include this in the error probability.

So now we have 1−Hq(p) as the “list decoding capacity:” the largest rate we can listdecode
for error probabilityp.

Lemma 1.5. If C is (p, ℓ)-list-decodable and ℓ < poly(n) and C ⊂ Σn, then R ≤ 1−Hq(p)+O(1).

Proof Sketch. This can be proven by contradiction: if the rate were larger than this, C should not
be list decodable, so we can pick a random center and show thatthere are too many code words in
the ball around that center.

3

For theq = 2 case, the list decoding capacity is 1−H(p): we can correct a fractionp of worst-
case errors and still have rate 1−H(p)−ε. We still get to capactiy even with worst-case errors. In
reality, channels don’t exactly match our models, so this ismore robust.

1.2 A toy problem

This problem can be found in a paper by Ar, Lipton, Rubinfeld,and Sudan from 1992.
Take a Reed-Solomon code[n,k+1,n−k]F. Say we have the messageP1(x) with deg(P1)≤ k.

Supposen/2 of the values are corrupted in the following way: the outputy0y1 . . .yn−1 hasyi either
P1(αi) or P2(αi), and there exist at leastn/2 values whereyi = P1(αi) = P2(αi). Clearly in this
case we should output bothP1 andP2.

We know that at each point,yi is either fromP1 or P2. How do we capture the “or” in this
statement? We’ll write

(yi −P1(αi))(yi −P2(αi)) = 0;

one of these must be 0. We write instead

Q(xi,yi) = (yi −P1(xi))(yi −P2(xi)),

so that we knowQ(xi,yi) = 0 for all i. Call this Condition 1.
We find this polynomial by expandingQ:

y2
i − (P1(xi)+P2(xi))yi +P1(xi)P2(xi) = 0.

Now we ignore the sum and product, stealing a degree:

y2
i −B(xi)yi +C(xi) = Q(xi,yi)

where deg(B) ≤ k and deg(C) ≤ 2k. Call this Condition 2.
Since the constraints are linear in the coefficients, we can find B andC efficiently. Thus, we

define the following two-step algorithm:

1. Find nonzeroQ meeting Condition 2 such thatQ(αi,yi) = 0 for i = 0,1, . . . ,n−1.

2. FactorQ asQ(xi,yi) = (yi −P1(xi))(yi −P2(xi)) and outputP1(xi).

We know that a solution exists to the first part. To prove the second part, letR(x) = Q(x,P1(x)).
Note that deg(R(x)) ≤ 2k. SinceR(αi) = 0 wheneverP1(αi) = yi, and this happens at leastn/2
times, ifn/2 > 2k, thenR(x) = 0. (This works ifk < n/k.)

4

	List Decoding
	List decoding and rate
	A toy problem

