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1 Communication Model

The communication model we are using consists of a source that generates digital information.
This information is sent to a destination through a channel. The communication can happen in the
spatial domain (i.e., we need to send information over a physical distance on a channel) or in the
time domain (i.e., we want to retrieve data that we stored at an earlier point of time).

The channel can be associated with noise. So we have two cases :

¢ Noiseless caserhe channel in this case transmits symbols without causing any errors. One
would need to exploit the redundancy in the source to economize the length of the transmis-
sion. This is done through data compression, also called source coding. The information is
decompressed at destination.

e Noisy case:The channel in this case introduces noise that causes errors in the received sym-
bols at the destination. To reduce the errors incurred due to noise, one should add systematic
redundancy to the information to be sent. This is done through channel coding.

It is known that reliable communication is possible in the above model if the entropy of the
source, i.e., the amount of non-redundant information it generates per unit of time, is less than the
“capacity” of the channel, i.e., the maximum number of information bits that can be communicated
reliable per channel use.

We will focus on the channel coding problem in the presence of noise, assuming that the infor-
mation is generated at the source is “source-coded” or compressed into a string of non-redundant
symbols over a finite alphabet prior to communication on the channel. We can communicate such
a two-stage scheme as in the following figure, and treat source and channel coding in isolation, due
to what is known as th8ource-Channel Codindpeorem.

The following diagram shows the modules of the communication model:

Source-Channel Coding Theorem:For a source with entropy no greater than the capacity of
the channel, dividing the transmission process to source coding followed by channel coding can
achieve a probability of error tending to zero for a large block length.

Then the part of the previous scheme we’ll be considering is:
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Shannon put forth a stochastic model of the channel. For us, it suffices to talk about discrete
memoryless channels. Such channels have an input alpAalaet output alphabel and a prob-
ability transition matrix describing the output distribution for every input. Each symbol is sent
over the channel independently of the previous symbols sent. Thus the channel is prescribed by a
|X| x || stochastic matrix where each row sums to 1.
Probability transition matrix:
V|

A

X p(y/x)

2 Examples of Channels

Channels are often described by input-output diagrams.

2.1 Binary Symmetric Channel (BSC)

The BSC takes as input one bit (0/1) and flips it with probabilit) < p < L. p is called
the crossover probability; we wri8SC, to denote the binary symmetric channel with crossover
probability p.



Figure 1: Diagram foBSC,,

2.2 Binary Erasure Channel (BEC)

The BEC takes as input one bit (O/1)and erases it to ? with probability< £ < 1,. e is called the
erasure probability; we writBEC. to denote the binary erasure channel with erasure probability
g.

Figure 2: Diagram foB EC.

2.3 Continuous Output Channel

The continuous output channel takes as input a symbol from a finite alphabet and maps it, accord-
ing to a specific noise distribution, to a real number. One example is the Binary Input Additive
White Gaussian Noise (BIAWGN) channel, where the noise has a normal distribution and acts
additively.
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Hence the conditional probability density function of the channel ouffmut inputz is given by :

prvfe) = <o ()
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2.4 Noisy Typewriter Channel

The noisy typewriter channel is given by the following diagram:
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Zero-error communication is possible if we justsend A, C, E,...,YorB, D, F,...., Z. So we
will end up with only 13 possibilities for the sent symbols. Thus the capacity of the channel is at
leastlog, 13 bits. In fact, one can prove that this rate is the maximum possible and the capacity of
the channel is exactlyg, 13 bits.

Zero-error communication at a positive rate is not possible BIfC),, since for every pair
of stringsx andy, there is a positive probability that gets distorted intg. This probability of
miscommunication can be reduced arbitrarily by high enough order repetition code.

Consider mapping O to zeroes and 1 to: ones. At the destination, decoding is done by majority,
i.e. if the number of received O's is greater tHapwe decide on a 0, else we decide on a 1. Hence,
the probability of error is given byPr(error) = ZZ% ("™)p'(1 — p)™~". This probability tends

to 0 asm tends toco but this causes the rate to tend to zero!!

Can we achieve any desired probability of error while maintaining a positive rate ? The answer is

yes. In fact, the largest possible rate was precisely characterized and described in Shannon’s work.

3 Shannon Capacity Theorem

We will start by defining the binary entropy function.
Definition 3.1. For 0 < z < 1, the entropy binary function, denotéflz) is given by

1 1
H(x) = zlog, - + (1 — z) log, 1—=

Note that we have~ @) = gen(1 — g)(1-2)n,

Theorem 3.2 (Shannon Capacity Theorem for the BSC)For everyp,0 < p < % and0 <
e < 1/2 — p, there exist$ > 0 such that for all largen, there exist an encoding functidh :
{0,1}* — {0,1}™ and a decoding functio® : {0,1}" — {0,1}* for k = (1 — H(p + ¢))n such
thatvm € {0, 1}*,
. Pr D(E(m) + noise #m) < 27",
noise of thessc,



The occurence of the entropy functidf(p) in the statement of the capacity theorem arises
since we will see tha?”’(")" is an accurate asymptotic estimate of the volume of a Hamming ball
of radiuspn.

Lemma3.3.For 0 <p <1, Voly(B(0,pn)) = >0, (%) < 28,

Proof.

IV
1
(@)
/\/\/\3\/—\/—\
~. ~. .
N N N N~
— .
|
=
3
VR
—
|
ks
N———
E

]

We will first prove the converse of Shannon theorem to give an intuition WhyH (p) is the
best rate one can hope for. For this purpose we will use the lower Béeind3 (0, pn)) > (;}1) >

2H(p)n=o(n) This fact follows from applying Stirling approximation of given by:

nl = v2mn (g)" (1 +0 (%)) .

We will also need the Chernoff bound.

Chernoff bound If X, X,,... X, are i.i.d 0/1 random variables withr[X; = 1] = p, then
VOoi<e<l1

75271

Pr[ZXZ- >(p+e)n| <27
i=1

*EZTL

Pr[ZXi <(p—e)n] <273

Proof sketch of the converse of Shannon theorem
Let £ : {0,1}* — {0,1}" be an encoding function, and It be the decoding functio® :
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{0,1}™ — {0,1}*. For a message: € {0, 1}*, let S,, be the inverse image of. underD, i.e.,
Sy =4y | D(y) = m}. Whenm is transmitted, by the Chernoff bound, with high probability
y = E(m) + noise lies in a shelf of radii ((p — ¢)n, (p + )n) aroundE(m). To achieve small
decoding error probability, most of the stringsSmmust be decoded ta, i.e., belong taS,,. We
know that|S| > () > 27®)m=°(_ It follows that|S,,| > 2"®)~°(") for everym. This implies

that2” > 37 ooy [Sm| > 28HH =0 'which yieldsk < (1 — H(p) + o(1)n.

We will continue the proof of Shannon theorem next lecture.
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