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1 Communication Model

The communication model we are using consists of a source that generates digital information.
This information is sent to a destination through a channel. The communication can happen in the
spatial domain (i.e., we need to send information over a physical distance on a channel) or in the
time domain (i.e., we want to retrieve data that we stored at an earlier point of time).

The channel can be associated with noise. So we have two cases :

• Noiseless case:The channel in this case transmits symbols without causing any errors. One
would need to exploit the redundancy in the source to economize the length of the transmis-
sion. This is done through data compression, also called source coding. The information is
decompressed at destination.

• Noisy case:The channel in this case introduces noise that causes errors in the received sym-
bols at the destination. To reduce the errors incurred due to noise, one should add systematic
redundancy to the information to be sent. This is done through channel coding.

It is known that reliable communication is possible in the above model if the entropy of the
source, i.e., the amount of non-redundant information it generates per unit of time, is less than the
“capacity” of the channel, i.e., the maximum number of information bits that can be communicated
reliable per channel use.

We will focus on the channel coding problem in the presence of noise, assuming that the infor-
mation is generated at the source is “source-coded” or compressed into a string of non-redundant
symbols over a finite alphabet prior to communication on the channel. We can communicate such
a two-stage scheme as in the following figure, and treat source and channel coding in isolation, due
to what is known as theSource-Channel Codingtheorem.

The following diagram shows the modules of the communication model:

Source-Channel Coding Theorem:For a source with entropy no greater than the capacity of
the channel, dividing the transmission process to source coding followed by channel coding can
achieve a probability of error tending to zero for a large block length.

Then the part of the previous scheme we’ll be considering is:
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Shannon put forth a stochastic model of the channel. For us, it suffices to talk about discrete
memoryless channels. Such channels have an input alphabetX , an output alphabetY and a prob-
ability transition matrix describing the output distribution for every input. Each symbol is sent
over the channel independently of the previous symbols sent. Thus the channel is prescribed by a
|X | × |Y| stochastic matrix where each row sums to 1.
Probability transition matrix:

|Y|

|X |


︷ ︸︸ ︷ p(y/x)



2 Examples of Channels

Channels are often described by input-output diagrams.

2.1 Binary Symmetric Channel (BSC)

The BSC takes as input one bit (0/1) and flips it with probabilityp , 0 ≤ p ≤ 1
2
. p is called

the crossover probability; we writeBSCp to denote the binary symmetric channel with crossover
probabilityp.
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Figure 1: Diagram forBSCp

2.2 Binary Erasure Channel (BEC)

The BEC takes as input one bit (0/1)and erases it to ? with probabilityε , 0 ≤ ε ≤ 1, . ε is called the
erasure probability; we writeBECε to denote the binary erasure channel with erasure probability
ε.

Figure 2: Diagram forBECε

2.3 Continuous Output Channel

The continuous output channel takes as input a symbol from a finite alphabet and maps it, accord-
ing to a specific noise distribution, to a real number. One example is the Binary Input Additive
White Gaussian Noise (BIAWGN) channel, where the noise has a normal distribution and acts
additively.

Σ = {−1, 1} → Channel→ R
x −→ y = x + z; z ∈ N(0, σ2)

Hence the conditional probability density function of the channel outputy on inputx is given by :

Pr(y|x) =
1√
2πσ

exp

(
−(y − x)2

2σ2

)

2.4 Noisy Typewriter Channel

The noisy typewriter channel is given by the following diagram:
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Zero-error communication is possible if we just send A, C, E,. . . , Y or B, D, F,. . . , Z. So we
will end up with only 13 possibilities for the sent symbols. Thus the capacity of the channel is at
leastlog2 13 bits. In fact, one can prove that this rate is the maximum possible and the capacity of
the channel is exactlylog2 13 bits.

Zero-error communication at a positive rate is not possible withBSCp, since for every pair
of stringsx andy, there is a positive probability thatx gets distorted intoy. This probability of
miscommunication can be reduced arbitrarily by high enough order repetition code.
Consider mapping 0 tom zeroes and 1 tom ones. At the destination, decoding is done by majority,
i.e. if the number of received 0’s is greater thanm

2
, we decide on a 0, else we decide on a 1. Hence,

the probability of error is given by:Pr(error) =
∑m

i=m
2

(
m
i

)
pi(1 − p)m−i. This probability tends

to 0 asm tends to∞ but this causes the rate to tend to zero!!
Can we achieve any desired probability of error while maintaining a positive rate ? The answer is
yes. In fact, the largest possible rate was precisely characterized and described in Shannon’s work.

3 Shannon Capacity Theorem

We will start by defining the binary entropy function.

Definition 3.1. For 0 ≤ x ≤ 1, the entropy binary function, denotedH(x) is given by

H(x) = x log2

1

x
+ (1− x) log2

1

1− x
.

Note that we have2−H(x)n = xxn(1− x)(1−x)n.

Theorem 3.2 (Shannon Capacity Theorem for the BSC).For everyp, 0 ≤ p < 1
2
, and 0 <

ε < 1/2 − p, there existsδ > 0 such that for all largen, there exist an encoding functionE :
{0, 1}k → {0, 1}n and a decoding functionD : {0, 1}n → {0, 1}k for k = (1−H(p + ε))n such
that∀m ∈ {0, 1}k,

Pr
noise of theBSCp

D(E(m) + noise 6= m) ≤ 2−δn.
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The occurence of the entropy functionH(p) in the statement of the capacity theorem arises
since we will see that2H(p)n is an accurate asymptotic estimate of the volume of a Hamming ball
of radiuspn.

Lemma 3.3. For 0 ≤ p ≤ 1
2
, Vol2(B(0, pn)) =

∑pn
i=0

(
n
i

)
≤ 2H(p)n.

Proof.

1 = (p + (1− p))n

≥
pn∑
i=0

(
n

i

)
pi(1− p)n−i

=

pn∑
i=0

(
n

i

)
(1− p)n

(
p

1− p

)i

≥
pn∑
i=0

(
n

i

)
(1− p)n

(
p

1− p

)pn

=

pn∑
i=0

(
n

i

)
ppn(1− p)(1−p)n

=

pn∑
i=0

(
n

i

)
2−H(p)n .

We will first prove the converse of Shannon theorem to give an intuition why1 −H(p) is the
best rate one can hope for. For this purpose we will use the lower boundVol2(B(0, pn)) ≥

(
n
pn

)
≥

2H(p)n−o(n). This fact follows from applying Stirling approximation ofn! given by:

n! =
√

2πn
(n

e

)n
(

1 + Θ

(
1

n

))
.

We will also need the Chernoff bound.

Chernoff bound If X1, X2, . . . Xn are i.i.d 0/1 random variables withPr[Xi = 1] = p, then
∀ 0 < ε < 1

Pr[
n∑

i=1

Xi ≥ (p + ε)n] ≤ 2
−ε2n

3

Pr[
n∑

i=1

Xi ≤ (p− ε)n] ≤ 2
−ε2n

3

Proof sketch of the converse of Shannon theorem
Let E : {0, 1}k → {0, 1}n be an encoding function, and letD be the decoding functionD :
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{0, 1}n → {0, 1}k. For a messagem ∈ {0, 1}k, let Sm be the inverse image ofm underD, i.e.,
Sm = {y | D(y) = m}. Whenm is transmitted, by the Chernoff bound, with high probability
y = E(m) + noise lies in a shellS of radii ((p − ε)n, (p + ε)n) aroundE(m). To achieve small
decoding error probability, most of the strings inS must be decoded tom, i.e., belong toSm. We
know that|S| ≥

(
n
pn

)
≥ 2H(p)n−o(n). It follows that|Sm| ≥ 2H(p)n−o(n) for everym. This implies

that2n ≥
∑

m∈{0,1}k |Sm| ≥ 2k+H(p)n−o(n), which yieldsk ≤ (1−H(p) + o(1)n.

We will continue the proof of Shannon theorem next lecture.
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