
CSE 533: Error-Correcting Codes Autumn 2006

Problem Set 2
Due on Friday, December 1

There are problems for a total of 80 points. It is enough to turn in any subset of (whole)
problems worth 60 points. If you turn in more problems, the score will be scaled down to 60.

Homework policy: Students are encouraged to work on the problems in small groups (of up to 3
people); however, all writeups should be done individually and must clearly cite any collaborators.
You are strongly urged to try and solve the problems without consulting any reference material be-
sides what we cover in class (such as any textbooks or material on the web where the solution may
appear either fully or in part). If for some reason you feel the need to consult some source, please
acknowledge the source and try to explain what difficulty you couldn’t overcome before consulting
the source and how it helped you overcome that difficulty.

1. (10 points) Computing a linear code on GV bound in singly exponential time.
Give a deterministic algorithm that given positive integers n ≥ d ≥ 2, runs in 2O(n) time and
outputs an [n, k, d]2 binary linear code with

2k ≥ 2n−1

Vol2(n− 1, d− 2)
.

Conclude that one can compute a linear code meeting the GV bound in singly exponential
time.

2. (10 points) Dual of Reed-Muller codes.
Denote by R(r, m) the binary m-variate Reed-Muller code of order r (recall that it is a
[2m, k, 2m−r]2 code where k =

∑r
i=0

(
m
i

)
).

Prove that the dual of R(r, m) is the Reed-Muller code R(m− r − 1,m).

3. (20 points) Parity Check view of Reed-Solomon codes.
Consider the Reed-Solomon code over a field F of size q and block length n = q−1 defined as

RSF[n, k, n− k + 1] = {(p(1), p(α), . . . , p(αn−1)) | p(X) ∈ F[X] has degree ≤ k − 1}

where α is the generator of the multiplicative group F∗ of F.

(a) Prove that

RSF[n, k, n− k + 1] = {(c0, c1, . . . , cn−1) ∈ Fn | c(α`) = 0 for 1 ≤ ` ≤ n− k ,

where c(X) = c0 + c1X + · · ·+ cn−1X
n−1} . (1)

Hint: Prove that the identity
∑n−1

i=0 αji = 0 holds for all j, 1 ≤ j ≤ n−1, and then make
use of it.

(b) Now suppose that F = F2m . Consider the binary code CBCH defined as RSF[n, k, n−k +
1] ∩ Fn

2 .1

1The subscript BCH stands for Bose-Chaudhuri-Hocquenghem, the discoverers of this family of codes.
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i. Prove that CBCH is a binary linear code of distance at least d = n − k + 1 and
dimension at least n− (d− 1) log2(n + 1).
Hint: Use the characterization (1) of the Reed-Solomon code.

ii. Prove a better lower bound of n−
⌈

d−1
2

⌉
log2(n + 1) on the dimension of CBCH.

Hint: Try to find redundant checks amongst the “natural” parity checks defining
CBCH.

iii. For d = 3, CBCH is the same as another code we have seen. What is that code?
iv. For constant d (and growing n), prove that CBCH have nearly optimal dimension for

distance d, in that the dimension cannot be n− t log2(n + 1) for t < d−1
2 .

4. (20 points) BCH-like codes that meet the Gilbert-Varshamov bound.
In this problem, we continue in the theme of Problem 3b and look at the intersection of a
Reed-Solomon code with Fn

2 to get a binary code. Let F = F2m . Fix positive integers d, n
with (d− 1)m < n < 2m, and a set S = {α1, α2, . . . , αn} of n distinct nonzero elements of F.
For a vector v = (v1, . . . , vn) ∈ (F∗)n of n not necessarily distinct nonzero elements from F,
define the Generalized Reed-Solomon code GRSS,v,d as follows:

GRSS,v,d = {(v1p(α1), v2p(α2), . . . , vnp(αn)) | p(X) ∈ F[X] has degree ≤ n− d} .

(a) (Gentle warm-up) Prove that GRSS,v,d is an [n, n− d + 1, d]F linear code.

(b) (Some more warm-up) Argue that GRSS,v,d ∩ Fn
2 is a binary linear code of rate at least

1− (d−1)m
n .

(c) Let c ∈ Fn
2 be a nonzero binary vector. Prove that (for every choice of d, S) there are at

most (2m − 1)n−d+1 choices of the vector v for which c ∈ GRSS,v,d.

(d) Using the above, prove that if the integer D satisfies Vol2(n, D−1) ≤ (2m−1)d−1 (where
Vol2(n, D−1) =

∑D−1
i=0

(
n
i

)
), then there exists a vector v ∈ (F∗)n such that the minimum

distance of the binary code GRSS,v,d ∩ Fn
2 is at least D.

(e) Using Parts (4b) and (4d) above, argue that the family of codes GRSS,v,d ∩ Fn
2 contains

binary linear codes that meet the Gilbert-Varshamov bound.

5. (10 points) Rate of linear list-decodable codes. For 0 < p < 1 and a positive integer
L, call a code C ⊂ Σn to be (p, L)-list decodable if every Hamming ball of radius pn (in the
space Σn) has at most L codewords of C. Prove that for every finite field Fq, 0 < p < 1−1/q,
integer L ≥ 1, and large enough n, there is a (p, L)-list decodable linear code C ⊆ Fn

q that

has rate at least 1−Hq(p)
(
1 + 1

logq(L+1)

)
− o(1).

Hint: Apply the usual random coding method of picking a generator matrix at random. In
estimating the probability that L nonzero messages all get mapped into a ball of radius pn,
these L events are not all independent (and this is the difference compared to picking a general
random code). But at least how many of these events are independent of one another?

6. (10 points) Chinese Remainder codes. In this problem, we will consider the number-
theoretic counterpart of Reed-Solomon codes. Let 1 ≤ k < n be integers and let p1 < p2 <
· · · < pn be n distinct primes. Denote K =

∏k
i=1 pi and N =

∏n
i=1 pi. The notation ZM

stands for integers modulo M , i.e., the set {0, 1, . . . ,M−1}. Consider the Chinese Remainder
code defined by the encoding map E : ZK → Zp1 × Zp2 × · · · × Zpn defined by:

E(m) = (m mod p1, m mod p2, · · · , m mod pn) .
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(Note that this is not a code in the usual sense we have been studying since the symbols at
different positions belong to different alphabets. Still notions such as distance of this code
make sense and are studied in the questions below.)

(a) Suppose that m1 6= m2. For 1 ≤ i ≤ n, define the indicator variable bi = 1 if E(m1)i 6=
E(m2)i and bi = 0 otherwise. Prove that

∏n
i=1 pbi

i > N/K.
Use the above to deduce that when m1 6= m2, the encodings E(m1) and E(m2) differ in
at least n− k + 1 locations.

(b) This exercise examines how the idea behind the Welch-Berlekamp decoder for Reed-
Solomon codes can be used to decode Chinese Remainder codes.
Suppose r = (r1, r2, . . . , rn) is the received word where ri ∈ Zpi . By Part (a), we know
there can be at most one m ∈ ZK such that∏

i:E(m)i 6=ri

pbi
i ≤

√
N/K . (2)

(Be sure you see why this is the case.)
The exercises below develop a method to find the unique such m, assuming one exists.
In what follows, let r be the unique integer in ZN such that r mod pi = ri for every
i = 1, 2, . . . , n (note that the Chinese Remainder theorem guarantees that there is a
unique such r).

i. Assuming an m satisfying (2) exists, prove that there exist integers y, z with 0 ≤
y <

√
NK and 1 ≤ z ≤

√
N/K such that y ≡ rz (mod N).

ii. Prove also that if y, z are any integers satisfying the above conditions, then in fact
m = y/z.

(Remark: A pair of integers (y, z) satisfying above can be found by solving the integer
linear program with integer variables y, z, t and linear constraints: 0 < z ≤

√
N/K; and

0 ≤ z · r − t · N <
√

NK. This is an integer program in a fixed number of dimensions
and can be solved in polynomial time. Faster, easier methods are also known for this
special problem.)

(c) (For your cognitive pleasure only; no need to turn this part in) Instead of
condition (2) what if we want to decode under the more natural condition for Hamming
metric, that is |{i : E(m)i 6= ri}| ≤ n−k

2 ? Using ideas similar to GMD decoding, show
how this can be done by calling the above decoder many times with different sets of
erasures.
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