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1 Introduction 
 
This paper presents a component in a simple query generation algorithm which is 

reliant only on the schema and data of the data set generated queries are to be 

run on. The entire system is meant to form a pipeline for the generation of 

sample queries which can be studied by researchers and adapted to their 

purposes. The end goal is to produce queries which highlight interesting 

information about the database which the researcher might not have already 

thought of. The algorithm component developed here is a step along that path. 

 

2 Motivation 
 
The SQLShare[6] system is designed to allow users with little SQL experience to 

upload data and construct databases with said data. Modern experiments in 

many fields generate large amounts of data, which is often collected into 

spreadsheets and manually manipulated by the researcher in an attempt to find 

information which matches certain criteria. Such querying of the data is far more 

easily done by setting up a database and querying it. Unfortunately, traditional 

database setup and maintenance require technical expertise often out of the 

reach of a small research team. SQLShare aims to significantly ease database 

setup by allowing researchers to simply upload their data to a web service which 

automatically sets up the database and then provides a simple interface to query 

the data. 

Unfortunately, it is still the case that a fairly extensive knowledge of SQL 

is required to fully utilize the power available in SQLShare. Having the data in a 

format such that it can easily be queried is arguably of little use to a researcher 

who does not know how to query it. 
Researchers are generally very intelligent, however, which leads to the key 

hypothesis of our system. SQL has a generally clear and self-descriptive syntax, 

and therefore we believe that even if researchers do not know how to formulate 

SQL queries from scratch, they can still understand already-constructed SQL 

queries. Farther, we believe that, given a good example query, researchers can 

adapt said query to better suit their purposes. This belief lightens the 

requirements on our system; it does not have to read the researcher’s mind, but 

instead simply generate queries which utilize different SQL constructions and 

present them in a clear fashion. 
 

3 Query Generation Algorithm 

 
3.1 The Problem 
 
Put simply, the core problem is how to define the utility of queries and select a 

useful set of queries to offer as examples to the end user. Complicating matters is 

the fact that we desire to handle cases where little to no external information is 



3 
 

available. Generally speaking, no query log will be available if a researcher has 

just loaded his data into SQLShare, nor will the schema of such uploaded data 

always be well-defined. Essentially, therefore, the inputs consist of the set of table 

schema and the data in the tables and little else, while the desired output is a set 

of about 20 example queries. 

Clearly, the best such queries are the ones that need no modification, as 

they already accomplish what the researcher wants. Just as clearly, in the absence 

of mind-reading, this standard is impossible to reach without extensive external 

information about the researcher. However, it is worth noting that example 

queries are not under significant pressure to be the absolute best examples 

possible. As long as the provided queries are structurally applicable, some 

reliance can be placed on the capability of researchers to modify supplied queries 

to suit their purposes, as discussed in section 2. 

Query utility is difficult to objectively quantify - what is “useful” is going 

to depend on the user’s knowledge and what they want to do. For example, if the 

user is not very familiar with the schema of tables in a database, example queries 

which demonstrate good schema coverage might be useful. However, there is a 

tradeoff between conciseness and schema coverage which becomes especially 

acute for large databases with sprawling schema - it is not possible to generate 20 

short, easily understandable queries which cover most of the schema of a 

database with several 400+ field tables (see the SDSS[1] database). 

 

3.2 Related Work 

 

There has certainly already been some work done in the area of automatically 

suggesting SQL to researchers who may or may not be very conversant in it. One 

which is intimately related with the approach presented in this paper is the work 

done by Bill Howe et al.[2] which tackles pretty much the same problem as that 

outlined above, namely, generating example queries without query logs or other 

external information. However, their approach focuses on generating join and 

selection clauses while this paper focuses on a different area of query generation, 

projection. I will discuss this difference of focus more fully in the next section. 

 Typically, however, approaches to automatic suggestion rely on data 

which, given the statement of the problem in section 3.1, cannot be assumed to be 

available. It is not the case that a log of queries is available[3], nor is it the case 

that user history and/or preferences are available[5]. In addition, the schema 

may be missing information or simply not well-defined, meaning our methods 

must work reasonably well in the absence of such information[4]. 

 

3.3 Our Approach 

 

In order to simplify matters at this early stage in the research, we restrict 

the class of queries generated by our system to those which contain only 

selections, projections, and joins, and do not consider nested queries. Such 
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queries (hereafter abbreviated as “SPJ” queries) have the simplest form and yet 

retain much expressive power. 

SPJ queries split naturally into three components, selection, projection, 

and joins. Our query generation algorithm, outlined in Figure 1, first finds the 

most “joinable” attributes (more on this later), then determines the most 

interesting subset of attributes to filter on from the attributes of the joined tables. 

Once this has been done, the projection phase attempts to determine interesting 

attributes available from the join, given the filtration which has already occurred. 

Once all three stages complete, a complete SPJ query can be produced. 

This paper focuses on the stage highlighted in red in Fig.1, the projection, 

as this is the phase which has had the least research already done on it. Bill Howe 

and his team at the University of Washington have done interesting initial 

research on how to determine good attributes to join on between tables, and they 

are also currently studying the selection phase, determining what attributes 

would be useful to filter on [2]. Therefore, I determined that the most useful 

contribution to be made at this point was to research the projection phase. 

 

4 Projection 
 

Projection is an important component of query generation due to the fact that it 

controls the number of columns in the results from a query. The overarching goal 

of constructing example queries must be kept in mind – there is no need to 

project an excessive number of attributes, even if the schema is large. Not only 

will this clutter the query, detracting from its purpose as an example, it is simply 

not necessary – we can let the researcher add any other desired attributes or 

remove unnecessary ones. My goal in this phase is to minimize the amount of 

modification needed by attempting to automatically ascertain interesting and/or 

important attributes, while keeping the number of attributes projected to a 

reasonable number. 

To this end, I have hypothesized a set of heuristics for estimating which 

attributes in a table are most important, which I present here in order of their 

estimated importance. 
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Heuristic 1: 
The first few attributes in a table schema are generally the most 

important. 
 

Heuristic 2: 
  Attributes representing data with more variation are more 

important. 

 

Heuristic 2.5: 

 Attributes which appear in a selection equality predicate are not 

likely to be very interesting. 
  

Heuristic 3: 

 Attributes with very similar names are often projected all at the 

same time. 

 

 Heuristic 4: 

 No more than one attribute of a set of attributes representing 

record-wise identical (or nearly record-wise identical) data should be projected. 

  

The intuition behind the first heuristic stems from my belief that people tend to 

think of the most important attributes of an explicit or implicit schema first. I use 

the term “implicit schema” to refer to the organization of data not in a database 

(for example, in an Excel spreadsheet, or even a raw data file, there is generally a 

first column, a second, and so on that each represent some aspect of the data). 

Further, I believe that people whose first language is left-to-right tend to put 

what they think is more important to the left. Analysis of my own habits when 

designing schema reveals this trait as well. 

The second heuristic was developed from an intuition that more varied 

data is more interesting. High variation often indicates a high potential for 

unexpected values, specifically outliers, which are often the chief points of 

interest in a dataset. Thus, this heuristic biases attribute selection toward picking 

attributes which display more outliers. 

Heuristic 2.5 (so named due to its close relation to heuristic 2) is based on 

the intuition that if a query filters on an attribute based on its equality to some 

value, it’s likely that the user already knows the value that attribute will take on, 

especially in the absence of subqueries. For example, given a simple schema 

(employeeID, name, city) suppose I construct a query to select employees which 

work in the city of Springfield. Such a query would contain a WHERE clause 

containing the following constraint: ... city = “Springfield” … In this case, 

projecting the city field is unlikely to be interesting, as everyone in the resulting 

set of records works at the same city, which is known. 
After examining some of the sample SDSS[CITE ME] queries, I saw that 

one query in particular projected psfMag_u, psfMag_g, psfMag_r, psfMag_i, and 
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psfMag_z (among other things). While I was ignorant of the actual purpose of 

these variables, I noted that u, g, r, i, z and prefixed versions apparently 

represented related data, since if more than one of them was projected, typically 

all of them were. Heuristic 3 heuristic codifies the observation that similarity in 

names often implies similarity in purpose, and that it may well be helpful to 

project multiple attributes which are closely related to each other. In the example 

I discussed above, I discovered eventually that u, g, r, i, and z (and their prefixed 

versions) track data relating to the color of objects, and so they were in truth 

related. 

 Finally, the fourth heuristic is to remove some potential redundancy in 

tables or views with large schema. It probably isn’t worth including data that 

means the same thing more than once, which is what this heuristic is trying to 

accomplish. Note that there are subtleties when applying this heuristic - for 

example, comparing the range and distribution of data represented by a pair of 

attributes might indicate interesting similarity not redundancy. A more useful 

attribute comparison for this heuristic, then, might be to compare fields in the 

same record, record by record - if the fields have little difference on this basis, 

then it’s likely that the attributes in the schema represent nearly identical 

concepts. This type of comparison is what is indicated by the “record-wise 

identical” wording in the definition of the heuristic. 

These heuristics provide the basis of a methodology to filter attributes 

available for projection. The method I envision is illustrated in Figure 2, which is 

an expansion of Figure 1.  

 

5 Evaluation 

 
Evaluation of the heuristics with an eye toward the main goal of generating 

queries which are useful to researchers is complicated by two factors. The first 
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difficulty is that without the capability to do in-depth user studies, objective 

evaluation of the success of the algorithm is basically impossible. The closest 

approximation would be to compare the resulting queries to human-generated 

example queries, e.g. the example queries provided with the SDSS dataset. The 

second difficulty is that not all components of the algorithm are complete, which 

makes the production of queries difficult. 

 Therefore, in order to provide some evaluation of the utility of my 

heuristics, I examine how well they apply to an existing set of example queries, 

the set of queries provided with the SDSS dataset. There are about 60 such 

queries, which display a great range of complexity. 
 In order to evaluate 

heuristic 1 on the query set, I 

examined the SELECT clauses 

of 20 queries and determined 

the index of each attribute in 

the relevant table schema. I 

then used this index to 

compute the following metric: 

     
               

           
 

where WPS is an abbreviation 

for “weighted positional 

score.” The resulting 

histogram is shown in Figure 

3. Note that the bins of the 

histogram are ranges of 

values of the WPS, and the frequency in each bin is the number of attributes from 

the subset of 20 queries which have WPS scores within that bin’s range. The 

displayed bimodality of this distribution of values is very interesting and was not 

initially expected – one possible explanation is that interesting attributes may be 

added to a schema after it has been used in a database as said attributes are 

revealed to be potentially useful. 

 Heuristic 2 proved difficult to evaluate on the SDSS dataset – I chose to 

measure variation by calculating the ratio of unique values to total values in each 

column for a set of about 30 attributes. In hindsight, it would not have been 

significantly more difficult to compute the variation in a more statistical sense, 

but time did not permit 

me to refine the 

measurement in such a 

fashion. As it happened, 

even this crude 

approximation of variation 

gave interesting results – 

see Figure 4. As with 

heuristic 4, an interesting 

Figure 3 

Figure 4 
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and not entirely expected bimodality appears. One possible explanation for the 

left hump in the histogram is that it is due to attributes which did not match my 

approximate notion of variation, but rather the more sophisticated statistical 

notion, and therefore, while there were many duplicate values, there were also 

several outliers. It’s also possible that the attributes were projected due to some 

knowledge of their meaning which rendered them useful while still not highly 

varied. 

 

6 Conclusion 
 

Ultimately, the measurements presented in section 5 are crude and 

should probably be taken not as proof of the viability of those heuristics but 

rather strong indications of viability. The bimodal nature of these histograms 

reveal interesting potential refinements to the heuristics – perhaps heuristic 1 

could be modified to state the first or last few attributes of a schema are the most 

important. 

To this end, more rigorous measurements are doubtless needed, and over 

a more diverse set of example queries, not just the ones from SDSS. 

Unfortunately, it is rather difficult, though not impossible, to acquire such sets of 

example queries generated by SQL experts. 

I feel it important to reiterate once more that it is not the case that the 

best attributes must be selected for projections, selections, or joins. The goal of 

the algorithm outlined in this paper is to generate some useful example queries, 

not necessarily find the absolute best example queries. 

The area in which I feel the algorithm is currently most lacking is in the 

production of more different SQL constructions. SPJ queries are simple and easy 

to understand, but it is also important to show the researcher some more 

complex queries, or perhaps they will not use the more complex tools simply 

because they do not know such tools exist. 

Another direction in which interesting research could be done is to 

supplement the example queries with annotations describing the purpose of each 

clause introduced by the queries, although this is more of an interface design 

question than anything else. 

To wrap up, this paper shows another step on the path toward an 

algorithm to generate clear and concise sample queries from datasets without 

already existing usage for researchers with little to no knowledge of SQL. 
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