
 More Like This: Query Recommendations for SQL

Christopher Miles
Department of Computer Science and Engineering

University of Washington, Seattle, WA, USA
cmiles@cs.washington.edu

1. Introduction
The Sloan Digital Sky Survey (SDSS) is a
success story for modern data analytics.
Exposing over 30 TB of data on approximately
500 million celestial bodies via SQL, SDSS is a
widely used resource within the astronomical
community [4]. Despite its ubiquity, the learning
curve is steep. Empirical data suggests that
scientists have little trouble grasping the basic
SELECT-FROM-WHERE paradigm of SQL, but
have difficulty mastering more advanced
concepts, such as nested queries, aggregates, and
user-defined functions [3]. Complex database
schemas further exacerbate their task. SDSS, for
instance, comprises over 90 tables, 200 user-
defined functions, and 3,400 columns [4]. In
light of these challenges, scientists often
compose their SQL queries by locating and
iteratively refining queries shared by other users.
In some cases, these queries can be modified to
achieve the desired result. In others, the user
reaches a dead end, unsure of how to proceed. In
part, the problem is one of discovery: how can a
user go from what is known to what is unknown?

Early work in this area focused on identifying
important attributes and tables in the database,
and suggesting extensions to a user's query based
on this information [5]. A fundamental limitation
of such importance-based approaches is that they
are context insensitive: the importance of a
particular attribute or table is independent of the
user's intended task. Moreover, it is rarely the
case that a user has difficulty identifying the
most important attributes and tables in the
database. Rather, query assistance is most
valuable in the case of infrequently used tables
and attributes.

More recent work has sought to address these
limitations by producing context-aware
suggestions based on partial information entered
by the user. Recommendations are drawn from
similar past queries authored by other users of
the database, thereby leveraging a growing,
shared body of experience [1,2].

The intuition behind QueRIE, a collaborative
filtering based approach to query
recommendation, is that if a pair of users UA and
UB have similar querying behavior, they likely
share an interest in the same data [2]. As a result,
the past queries of UB can serve as a guide for
UA. Users are represented as item vectors, with
each element corresponding to the user's
preference for a particular tuple. Ui = {r1, r2, …,
rn}. Similarity between a pair of users is
computed using a vector similarity metric such
as cosine similarity. Given a set of users U = {U1,
U2, …, UM} and a specific user Ux, a ranked list
of the top k most similar users is obtained by
computing pairwise similarities between Ux and
each element of U. The recommended queries
are drawn from the set of queries associated with
the top k most similar users.

In contrast to QueRIE, which recommends full
SQL queries, SnipSuggest assists users in
composing complex queries by recommending a
set of context-aware additions to a specific
clause in a partially stated SQL query [1].
Queries are modeled as collections of abstract
features. A directed, acyclic graph representing
the space of queries is constructed by adding a
vertex for every possible set of features and an
edge between vertices whose feature sets differ
by only one element. The user's partial query is
mapped onto a particular vertex in the graph.

Descendants of the vertex are referred to as
potential goals, as they approximate the user's
intended query. The recommendation problem is
then to rank the outgoing edges for the vertex
that corresponds to the user's partially written
query.

SnipSuggest maintains the history of past queries
in a set of 3 tables collectively referred to as the
Query Repository. The schemas for these tables
are shown in Listing 1. The Queries table stores
metadata about a query (e.g. timestamp,
username), as well as the query’s text. The
Features table contains metadata about a feature,
including the clause from which it was extracted
and that feature's abstracted representation.
Feature definition, extraction, and representation
are discussed in further detail in Sections 2.2-2.4.
Finally, the QueryFeatures table associates
features with the queries in which they occur.

Queries(qid, ts, username, database, query)
Features(fid, clause, expression, snippet)
QueryFeatures(qid, fid)

Listing 1. Table definitions for SnipSuggest’s Query

Repository. Primary keys are underlined.

In this paper, I present an alternative approach,
More Like This (MLT), to the problem of full-
text query recommendation that builds upon
concepts introduced in SnipSuggest. Given an
input query Q, MLT searches the Query
Repository for the top k most similar queries to
Q. Per SnipSuggest, queries are modeled as
collections of abstracted features. Similarity
between a pair of queries is defined in terms of
the term-frequency—inverse document
frequency (tf-idf) of their respective feature sets.
A subjective, per-clause weight can optionally be
applied. A more formal treatment of query
similarity can be found in Section 2.5.

The recommendations produced by MLT are
quantitatively evaluated on a random sample of
10,000 queries logged by the SDSS server from
2002 to 2009. Syntactically invalid queries and
those that contain proprietary SQL features are
removed. Since the queries lack metadata,

attributing a query to a specific user is
impossible. As a result, a simple heuristic based
on edit distance was devised for identifying pairs
of queries predicted to have been executed
consecutively by the same user.
Recommendation quality is assessed for such
query pairs (Qi, Qi+1) by determining the number
of times the top k recommended queries contain
Qi+1, given Qi as input. Additional details on
evaluation can be found in Section 3.

The primary contributions of this paper are:

1. A recursive method for representing
arbitrarily complex SQL expressions as
abstract feature strings. This
representation captures the overall
structure of an expression without getting
bogged down in unnecessary detail.
(Section 2.3)

2. A similarity function based on tf-idf for
assessing the similarity between a pair of
queries represented as collections of
abstract features. The function can
optionally be extended with subjective,
per-clause weights. (Section 2.4)

3. A formal definition of recommendation
diversity and an efficient algorithm for
selecting an optimal solution to the query
recommendation problem. (Section 2.4.4)

4. An approach for quantitatively evaluating
the performance of MLT in the absence
of user-query attribution. (Section 3)

2. Methods

2.1 Parsing SQL
The primary responsibility of the parser is to
determine the grammatical structure of its input
and, if well formed, construct a data structure
containing an abstract representation of that
input (e.g. parse tree). This is achieved by
determining how the input is derived from the
start symbol of the formal grammar defining the
language. The two basic approaches for
accomplishing this task are top-down parsing
and bottom-up parsing [9].

SQL is a particularly challenging language to
parse. Despite the fact that it was adopted as a
standard by the American National Standards
Institute (ANSI) in 1986 and International
Organization for Standardization (ISO) in 1987,
formal grammars that reliably operate across
multiple database implementations are rare. One
reason for this is that SQL allows a tremendous
amount of flexibility at the expression level.
Although this likely contributed to SQL's
popularity, it complicates the design of parsers
significantly. Additionally, both commercial and
open source databases support proprietary
extensions to the language, further complicating
parser construction.

As a result of these challenges, researchers often
rely on parsers that support only a subset of the
SQL language. Moreover, these parsers are
typically selected for pragmatic reasons (e.g.
programming language support). Accordingly, I
am using the open source Zql parser in MLT [8].
Technically speaking, Zql performs no parsing
itself; rather, it delegates responsibility for
interpreting the input text to an internal LL(k)
parser generated by JavaCC [10]. Zql supports a
reasonable subset of the SQL standard, but
notably lacks support for table-valued functions
and the JOIN, LEFT JOIN, RIGHT JOIN, and
FULL JOIN keywords.

Though adequate for the needs of this project,
Zql's API suffers from an ill-conceived type
hierarchy. In no fewer than 20 places in the MLT
source code, the Java instanceof operator is
invoked to determine the type of a parsed object
at runtime. Program control flow forks
depending on the result. The ZStatement class,
from which all SQL statements derive, illustrates
this point nicely. Listing 2 shows the ZStatement
class in its entirety.

Listing 2. Zql’s ZStatement interface.

At issue here is the fact that the interface
provides no ability to distinguish between
statements representing inserts, deletes, updates,
transactions, or queries. Furthermore, in order to
make use of a ZStatement instance in any way
whatsoever, it must be cast to the appropriate
type (ZDelete, ZInsert, ZUpdate, ZTransactStmt,
ZQuery). An analogous issue is encountered
with the ZExp class, from which all SQL
expressions derive.

2.2 Feature Definition
We borrow from SnipSuggest the definitions of a
feature and a feature set.

Definition 1. A feature f is a function that takes a
query as input, and returns true or false
depending on whether a certain property holds
on that query.

Definition 2. The feature set of a query q is
defined as: features(q) = {f | f(q) = true}

Features are extracted from the FROM, SELECT,
WHERE, ORDER BY, GROUP BY, HAVING,
and DISTINCT clauses of a query (or nested
query). Features have form:

<clause>-<expression>

For example, if attribute A from relation R were
referenced in the SELECT clause, the
corresponding feature would be “SELECT-R.A.”
Features corresponding to complex expressions
are abstracted and evaluated using a recursive
method described in Section 2.3.

2.3 Abstract Representation

2.3.1 Motivation
To motivate the need for an abstract
representation for expressions, consider the
following scenario. Assume we are given a
database D containing 3 queries– Q1, Q2, and Q3.
Each of these queries is associated with a set of
extracted features– F1, F2, and F3 respectively.

Q1: SELECT R.a, R.b FROM R WHERE R.a=1
F1: [SELECT-R.a, SELECT-R.b, FROM-R, WHERE-R.a,
WHERE-=_R.a,1]

Q2: SELECT R.a, R.b FROM R WHERE R.a=2
F2: [SELECT-R.a, SELECT-R.b, FROM-R, WHERE-R.a,
WHERE-=_R.a,2]

Q3: SELECT (R.d + 6) FROM R, S WHERE R.id=S.id
AND R.a=3
F3: [SELECT-+_R.d,6, FROM-R, FROM-S, WHERE-R.id,
WHERE-S.id, WHERE=_R.id,S.id, WHERE-R.a, WHERE-
=_R.a,3]

Assume we are presented with a new query Q for
which we wish to identify similar queries in D.
Let FQ be the set of features extracted from Q.

Q: SELECT R.a, R.c FROM R WHERE R.a=3
FQ: [SELECT-R.a, SELECT-R.c, FROM-R, WHERE-R.a,
WHERE-=_R.a,3]

Observe that F1, F2, and F3 have 3 features in
common with FQ (underlined). For F1 and F2,
those features are SELECT-R.a, FROM-R, and
WHERE-R.a. For F3, those features are FROM-
R, WHERE-R.a, and WHERE=_R.a,3. If we
treat all features as having equal weight, we must
conclude that all entries in D are equally similar
to Q by virtue of the fact that they share the same
number of features with FQ. However, it should
be clear that queries Q1 and Q2 are structurally
more similar to Q, and should thus be ranked
ahead of Q3. The literal representation employed
in this example is too fine-grained.

The same example represented in the abstract
form used in MLT and described in Section 2.3.2
is shown in Listing 3. In this representation, Q1
and Q2 have 4 features in common with F,
whereas Q3 has 3. Treating all features as equally
important, Q1 and Q2 are correctly ranked ahead
of Q3 in the query recommendation output, again
by virtue of the fact that they contain a greater
number of features in common with Q.

Q1: SELECT R.a, R.b FROM R WHERE R.a=1
F1: [SELECT-R.a, SELECT-R.b, FROM-R, WHERE-R.a,
WHERE-=_R.a,?]

Q2: SELECT R.a, R.b FROM R WHERE R.a=2
F2: [SELECT-R.a, SELECT-R.b, FROM-R, WHERE-R.a,
WHERE-=_R.a,?]

Q3: SELECT (R.d + 6) FROM R, S WHERE R.id=S.id
AND R.a=3
F3: [SELECT-+_R.d,6, FROM-R, FROM-S, WHERE-R.id,
WHERE-S.id, WHERE=_R.id,S.id, WHERE-R.a, WHERE-
=_R.a,?]

Q: SELECT R.a, R.c FROM R WHERE R.a=3
FQ: [SELECT-R.a, SELECT-R.c, FROM-R, WHERE-R.a,
WHERE-=_R.a,?]

Listing 3. The example from Section 2.3.1
represented in the abstract format used by MLT.

2.3.2 Recursive Formulation
The process by which an arbitrarily complex
SQL expression is transformed into an abstract
feature string is shown in Listing 4. Recall that
the WHERE clause in the preceding example
contained the expression “R.a = 3.” The abstract
representation of this expression is “=_R.a,?”.
The constant (3) is replaced by a placeholder (?).

def abstract(expr, features):
 if expr is a constant:
 return “?”
 else if expr is a column name:
 return table name + “.” + column name
 else if expr is an expression:
 n = num_operands(expr)
 o = operator(expr)

 # handle unary +, -
 if n == 1 and (o == “+” or o == “-”):
 p = expr.operand[0]
 return abstract(p, features)
 else:
 result = o + “_”
 for i = 0 to n:
 p = expr.operand[i]
 result += abstract(p, features)
 if (i+1) < n:
 result += “,”
 return result
 else if expr is a query:
 features.addAll(extractFeatures(expr))
 return “~”

Listing 4. Pseudocode describing the process by

which an expression is transformed into an abstract
feature string

To take a more complex example, Listing 5
illustrates the set of features F extracted from the
lengthy but otherwise straightforward query Q.

Q: SELECT ra, dec, modelmag_r, modelmagerr_r,
modelmag_i, modelmagerr_i, photoz.z, photoz.zerr

FROM galaxy, photoz
WHERE (galaxy.objid=photoz.objid)
AND (ra BETWEEN 315.773258 AND 315.779022)
AND (dec BETWEEN -0.968437 AND -0.966228)

F: [
FROM-galaxy,
FROM-photoz,
SELECT-ra
SELECT-dec,
SELECT-modelmag_r,
SELECT-modelmagerr_r,
SELECT-modelmag_i,
SELECT-modelmagerr_i,
SELECT-photoz.z,
SELECT-photoz.zerr,
WHERE-=_galaxy.objid,photoz.objid,
WHERE-BETWEEN_ra,?,?,
WHERE-BETWEEN_dec,?,?,
WHERE-
AND_=_galaxy.objid,photoz.objid,BETWEEN_ra,?,?,BE
TWEEN_dec,?,?,
]

Listing 5. A concrete example illustrating the set of

features extracted from a more complex query.

2.4 Query Similarity

2.4.1 tf-idf
tf-idf is a statistical measure commonly used in
information retrieval to rank a document's
relevance to a user's query [11]. The computation
of tf-idf and its extension to query similarity in
MLT are discussed in detail below.

The intuition behind tf-idf is that the importance
of a term ti to a particular document dj increases
proportionally to its number of occurrences, but
is weighted by the general importance of ti to the
larger corpus of documents from which dj is
drawn.

The tf-idf score for term ti and document dj is:

where tfi,j represents the term frequency of term i
in document j, and idfi represents the inverse
document frequency of term i in the corpus. A
high score is obtained by having a large number
of occurrences in a given document and few
occurrences in the overall corpus.

Inverse document frequency (idf) measures the
general importance of a term ti. It is computed by
taking the logarithm of the result of dividing the
number of documents in the corpus |D| by the
number of documents in the corpus that contain
term ti.

Term frequency (tf) measures the importance of
term ti to document dj. It is computed by dividing
the number of occurrences of ti in dj by the size
of the document.

2.4.2 Application of tf-idf to MLT
tf-idf is readily adapted for use in MLT. A
simple ranking function is computed by
summing the tf-idf scores for each feature
extracted from the input query.

Definition 3. Given a pair of queries Qi, Qj and
their associated feature sets Fi, Fj, similarity is
defined by the following formula.

2.4.3 Subjective, per-clause Weights
A byproduct of computing query similarity using
tf-idf is that relatively rare features in the input
query receive large weights, whereas common
features receive small weights. This has the
effect of biasing the ranking of recommend
queries in favor of those containing more
selective features.

tf ! idfi, j = tfi, j " idfi

idfi = log
|D |

| {d | ti ! d} |
"

#
$

%

&
'

tfi, j =
ni, j
nk, j

k
!

similarity(Fi,Fj) = tf (f ,Fj)! idf (f)
f"Fi

#

idf (f) = log
nQR

| {Q | f ! features(Q)} |
"

#
$

%

&
'

tf (f ,Fj) =
nf ,Fj
| Fj |

It may also be desirable to intentionally bias
search in order to diversify the set of
recommended queries. For example, most users
understand the basic SELECT-FROM-WHERE
paradigm in SQL. However, they may not
understand how aggregates work. Thus, features
containing a GROUP BY clause could be given
additional weight. This is achieved by
introducing a per-clause weight to the tf-idf
computation. By default, per-clause weights are
uniform (e.g. 1.0).

2.4.4 Diversifying the Results
Recall that the purpose of MLT is to assist non-
expert users in formulating queries based on the
shared experience of other users of the database.
To this end, MLT is only effective if it
recommends a diverse set of queries that either
introduce new SQL concepts to the user or
identify previously unexplored portions of the
database.

One of the first things you will notice after
implementing tf-idf is that it works too well. The
top k recommendations are extremely similar to
the input query. Consider the top 3 results
returned for the query shown in Listing 7.

Input query:
SELECT count(*)
FROM photoprimary
WHERE htmid >= 13351851655168
AND htmid <= 13351852703743

Ranked results (decreasing order of
relevance)
1. (1.548096)
select count(*) from photoprimary where (htmid >=
9465428443136 and htmid <= 9465432637439) ;
2. (1.548096)
select count(*) from photoprimary where (htmid >=
9459903496192 and htmid <= 9459904544767) ;
3. (1.548096)
select count(*) from photoprimary where (htmid >=
9454279983104 and htmid <= 9454281031679) ;

Listing 7. Query recommendations returned by MLT
prior to diversification. The top 3 recommendations
are shown above, in decreasing order of similarity.

Similarity scores are shown in parentheses.

These results are clearly too similar to the input
query to be of any value to the user. They differ
only in the choice of constants in the WHERE
clause.

Definition 4. The diversity of a set of
recommendations R={R1, R2, …, Rk} for some
input query Q is:

The desired set of recommendations R* is
maximally diverse. It contains a set of queries
that, collectively, are minimally similar to one
another. Of course, this criterion could be
trivially satisfied by identifying a set of k queries
in QR that are pairwise-least similar to one
another, regardless of the input query. R* must be
further constrained.

In addition to maximizing the diversity function,
R* must also maximize similarity to the input
query Q. This is achieved by maximizing the
function:

When the Query Recommender is constrained by
these criteria, a vastly improved set of
recommendations is returned.

Input query: select count(*) from photoprimary
where (htmid >= 13351851655168 and htmid <=
13351852703743) ;

Ranked results (decreasing order of
relevance)
 1. (1.548096)
select count(*) from photoprimary where (htmid >=
15176972632064 and htmid <= 15176973680639);
 2. (0.428301)
select count(*) from photoobj p, specobj s where
p.objid=s.bestobjid and (s.specclass = 3 or
s.specclass = 4);
 3. (0.408258)
select objid from photoprimary where ra between
104.433294 and 104.730872 and dec between -
56.022222 and -55.855556;

Listing 8. Query recommendations returned by MLT
after diversification.

diversity R() = !similarity Ri,Rj()
i< j

k

"

similarity Q,Ri()
i=1

k

!

3. Evaluation

The recommendations produced by MLT are
quantitatively evaluated on a random sample of
10,000 queries logged by the SDSS server from
2002 to 2009. Syntactically invalid queries,
duplicates, and those that contain proprietary
SQL features are removed. Also, if the Query
Repository contains an exact match to a user's
query, it is not included in the set of
recommendations.

3.1 Database Statistics
After syntactically invalid queries were removed
from the data set, as well as duplicates and those
containing proprietary SQL features, 1,603
queries remained. 27,967 features were extracted
from these queries, 1,465 of which were unique.
The average query contained 863 characters,
while the longest and shortest queries contained
7,565 and 29 characters, respectively. On
average, a query contained 17 features. The
minimum number of features in a query was 2,
while the maximum was 450.

Clause # Occurrences
SELECT 21,587
FROM 1,785

WHERE 4,559
DISTINCT 14
GROUP BY 1

HAVING 1
ORDER BY 20

Table 1. Distribution of features extracted from the

SDSS data set to SQL clauses. Note the
underrepresentation of aggregates and ordering.

3.2 Quantitative Evaluation

3.2.1 Query Attribution
Since the queries in the SDSS data set lack
metadata, attributing a query to a specific user is
impossible. As a result, a simple heuristic based
on edit distance was devised for identifying pairs
of queries predicted to have been issued
consecutively by the same user. Specifically,

given a pair of queries Qi and Qj, the edit
distance between Qi and Qj is calculated using
dynamic programming. Edit distance is
normalized to the interval [0..1], where 1
represents identity and 0 represents complete
dissimilarity. If the normalized edit distance
between Qi and Qj is between 0.6 and 0.8, the
queries are considered to belong to the same
session. Empirically, pairs of queries with
normalized edit distances in this range produced
reasonable results.

3.2.2 High- and Low-quality Matches
Using the query attribution method described
above, sets of query pairs (Qi, Qi+1) hypothesized
to have been issued by the same user were
collected. Recommendation quality was
quantitatively evaluated by tracking the number
of times the set of recommendations for Qi
contained Qi+1.

In the evaluation procedure, we distinguish
between high- and low-quality matches. A match
(Qi+1, R) is considered high-quality if:

The reflexivity in the definition stems from the
fact that size of the feature set of a
recommendation is not strictly greater than or
equal to the size of the feature set of the query.
Although this may be a desirable property,
particularly in the case of query assistance, it is
not currently enforced.

In many cases, features(R) was very similar to
features(Qi+1), but not identical. To reward such
“near-misses,” I introduced the concept of a low-
quality match. A match is considered to be low-
quality if the intersection of features(Qi+1) and
features(R) is sufficiently large. Overlap
threshold is defined as:

features(R)! features(Qi+1) || features(Qi+1)! features(R)

| features R()! features Qi+1() |
| features Qi+1() |

! !

3.2.3 Results
The query evaluation procedure described above
was run on the set of predicted user-query pairs
for varying values of k. The results are shown in
Figure 1.

Figure 1. Depicts recommendation accuracy on the

predicted user-query pairs as a function of the
number of recommendations.

The observed results are consistent with
expectations. Namely, the percentage of high-
quality matches increases with the number of
recommendations. In the extreme case where
only a single recommendation is generated, a
high-quality match is returned approximately
45% of the time. If we include low-quality
matches, recommendation accuracy rises to
68.9%. As the number of recommendations
increases to k=10, the percentage of high-quality
matches exceeds 75%, with a combined accuracy
of 100%.

The number of high-quality matches levels off
around k=10 recommendations. This is likely an
artifact of the small size of the Query Repository.
It is important to remember that k is the
maximum number of recommendations returned,
not the total. If there are m < k queries in the
Query Repository whose similarity to the input is
non-zero, only m results are returned.

Interestingly, the percentage of low-quality
matches was approximately constant for various

values of k. This is likely to be an artifact of the
user-query attribution heuristic.

These results, although promising, require
additional validation. It is possible that the user-
query attribution heuristic biases the results in
favor of the method. An additional data set with
known user-query attribution is currently being
collected. When a sufficient number of queries
have been catalogued, this experiment will be
rerun.

4. Conclusion
In this paper, I presented an alternative approach,
More Like This (MLT), to the problem of full-
text query recommendation. Queries are modeled
as collections of abstracted features. Similarity
between a pair of queries is defined in terms of
tf-idf of their respective feature sets.

The recommendations produced by MLT are
quantitatively evaluated on a random sample of
10,000 queries logged by the SDSS server from
2002 to 2009. Since the queries lack metadata,
attributing a query to a specific user is
impossible. As a result, a simple heuristic based
on edit distance was devised for identifying pairs
of queries predicted to have been issued
consecutively by the same user. Despite the
imprecision of the query attribution method,
recommendation quality is promising.

In terms of future work, there is much to be done.
First and foremost, I intend on integrating MLT
functionality within an actual RDBMS. SQLite
appears to be a good candidate. In doing so,
additional data sets with known user-query
attribution could be created. These “ground-truth”
data sets would permit a more thorough analysis
of recommendation quality. Should the results
turn out well, I would like to qualitatively
evaluate the recommended queries by conducting
a series of controlled user studies. Despite their
cost and complexity to set up, user studies are an
excellent mechanism for gaining feedback.

Another aspect of MLT that bears additional
scrutiny is the use of subjective, per-clause

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 5	 10	 15	 20	

Ac
cu
ra
cy
	

#	 Recommendations	

Recommendation	 Accuracy	

High-‐Quality	 Low-‐Quality	 Combined	

weights to bias the set of recommended queries.
Empirical data has shown that most scientific
users readily grasp SQL's SELECT-FROM-
WHERE paradigm. Gaining a better
understanding of the interplay between idf scores
and subjective, per-clause weighting would
allow for the creation of a sophisticated SQL
learning tool.

5. References
[1] Khoussainova, N., Kwon, Y., Balazinska, M.,
 Suciu, D. SnipSuggest: Context-Aware
 Autocompletion for SQL. Proc. VLDB
 Endow. 4, 1 (October 2010), 22-33.
[2] Chatzopoulou, G., Eirinaki, M., Polyzotis, N.
 Query Recommendations for Interactive
 Database Exploration. SSDBM 2009, LNCS
 5566, pp. 3–18, 2009.
[3] Howe, B., Cole, G., Key, A., Khoussainova,
 N. SQL is Dead; Long Live SQL: Smart
 Services for Ad Hoc Databases. Microsoft

 Research Whitepaper. 2010.
 [4] Sloan Digital Sky Survey.
 http://www.sdss.org.
 [5] Yang, X., Procopiuc, C.M., and
 Srivastava, D. Summarizing relational
 databases. Proc. VLDB Endow., 2(1): 634-
 645, 2009.
 [6] Baeza-Yates, R., and Riberio-Neto, B.
 Modern Information Retrieval. Addison-
 Wesley Longman Publishing, Boston, MA,
 1999.
[7] ANTLR. http://www.antlr.org.
 [8] Zql. http://zql.sourceforge.net.
 [9] Cooper, K.D., Torczon, L. Engineering a
 Compiler. Morgan Kaufmann Publishers, San
 Francisco, CA, 2008.
[10] JavaCC. http://javacc.java.net.
[11] Sparck-Jones, Karen. A statistical
 interpretation of term specificity and its
 application in retrieval. Journal of
 Documentation, 28(1): 11-21, 1972.

