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1.  Introduction 
The Sloan Digital Sky Survey (SDSS) is a 
success story for modern data analytics. 
Exposing over 30 TB of data on approximately 
500 million celestial bodies via SQL, SDSS is a 
widely used resource within the astronomical 
community [4]. Despite its ubiquity, the learning 
curve is steep. Empirical data suggests that 
scientists have little trouble grasping the basic 
SELECT-FROM-WHERE paradigm of SQL, but 
have difficulty mastering more advanced 
concepts, such as nested queries, aggregates, and 
user-defined functions [3]. Complex database 
schemas further exacerbate their task. SDSS, for 
instance, comprises over 90 tables, 200 user-
defined functions, and 3,400 columns [4]. In 
light of these challenges, scientists often 
compose their SQL queries by locating and 
iteratively refining queries shared by other users. 
In some cases, these queries can be modified to 
achieve the desired result. In others, the user 
reaches a dead end, unsure of how to proceed. In 
part, the problem is one of discovery: how can a 
user go from what is known to what is unknown? 
 
Early work in this area focused on identifying 
important attributes and tables in the database, 
and suggesting extensions to a user's query based 
on this information [5]. A fundamental limitation 
of such importance-based approaches is that they 
are context insensitive: the importance of a 
particular attribute or table is independent of the 
user's intended task. Moreover, it is rarely the 
case that a user has difficulty identifying the 
most important attributes and tables in the 
database. Rather, query assistance is most 
valuable in the case of infrequently used tables 
and attributes. 
 

More recent work has sought to address these 
limitations by producing context-aware 
suggestions based on partial information entered 
by the user. Recommendations are drawn from 
similar past queries authored by other users of 
the database, thereby leveraging a growing, 
shared body of experience [1,2]. 
 
The intuition behind QueRIE, a collaborative 
filtering based approach to query 
recommendation, is that if a pair of users UA and 
UB have similar querying behavior, they likely 
share an interest in the same data [2]. As a result, 
the past queries of UB can serve as a guide for 
UA. Users are represented as item vectors, with 
each element corresponding to the user's 
preference for a particular tuple. Ui = {r1, r2, …, 
rn}. Similarity between a pair of users is 
computed using a vector similarity metric such 
as cosine similarity. Given a set of users U = {U1, 
U2, …, UM} and a specific user Ux, a ranked list 
of the top k most similar users is obtained by 
computing pairwise similarities between Ux and 
each element of U. The recommended queries 
are drawn from the set of queries associated with 
the top k most similar users. 
 
In contrast to QueRIE, which recommends full 
SQL queries, SnipSuggest assists users in 
composing complex queries by recommending a 
set of context-aware additions to a specific 
clause in a partially stated SQL query [1]. 
Queries are modeled as collections of abstract 
features. A directed, acyclic graph representing 
the space of queries is constructed by adding a 
vertex for every possible set of features and an 
edge between vertices whose feature sets differ 
by only one element. The user's partial query is 
mapped onto a particular vertex in the graph. 



Descendants of the vertex are referred to as 
potential goals, as they approximate the user's 
intended query. The recommendation problem is 
then to rank the outgoing edges for the vertex 
that corresponds to the user's partially written 
query. 
 
SnipSuggest maintains the history of past queries 
in a set of 3 tables collectively referred to as the 
Query Repository. The schemas for these tables 
are shown in Listing 1. The Queries table stores 
metadata about a query (e.g. timestamp, 
username), as well as the query’s text. The 
Features table contains metadata about a feature, 
including the clause from which it was extracted 
and that feature's abstracted representation. 
Feature definition, extraction, and representation 
are discussed in further detail in Sections 2.2-2.4. 
Finally, the QueryFeatures table associates 
features with the queries in which they occur.  
 
Queries(qid, ts, username, database, query) 
Features(fid, clause, expression, snippet) 
QueryFeatures(qid, fid) 

 
Listing 1. Table definitions for SnipSuggest’s Query 

Repository. Primary keys are underlined. 
 
In this paper, I present an alternative approach, 
More Like This (MLT), to the problem of full-
text query recommendation that builds upon 
concepts introduced in SnipSuggest. Given an 
input query Q, MLT searches the Query 
Repository for the top k most similar queries to 
Q. Per SnipSuggest, queries are modeled as 
collections of abstracted features. Similarity 
between a pair of queries is defined in terms of 
the term-frequency—inverse document 
frequency (tf-idf) of their respective feature sets. 
A subjective, per-clause weight can optionally be 
applied. A more formal treatment of query 
similarity can be found in Section 2.5. 
 
The recommendations produced by MLT are 
quantitatively evaluated on a random sample of 
10,000 queries logged by the SDSS server from 
2002 to 2009. Syntactically invalid queries and 
those that contain proprietary SQL features are 
removed. Since the queries lack metadata, 

attributing a query to a specific user is 
impossible. As a result, a simple heuristic based 
on edit distance was devised for identifying pairs 
of queries predicted to have been executed 
consecutively by the same user. 
Recommendation quality is assessed for such 
query pairs (Qi, Qi+1) by determining the number 
of times the top k recommended queries contain 
Qi+1, given Qi as input. Additional details on 
evaluation can be found in Section 3. 
 
The primary contributions of this paper are: 

1. A recursive method for representing 
arbitrarily complex SQL expressions as 
abstract feature strings. This 
representation captures the overall 
structure of an expression without getting 
bogged down in unnecessary detail. 
(Section 2.3) 

2. A similarity function based on tf-idf for 
assessing the similarity between a pair of 
queries represented as collections of 
abstract features. The function can 
optionally be extended with subjective, 
per-clause weights. (Section 2.4) 

3. A formal definition of recommendation 
diversity and an efficient algorithm for 
selecting an optimal solution to the query 
recommendation problem. (Section 2.4.4) 

4. An approach for quantitatively evaluating 
the performance of MLT in the absence 
of user-query attribution. (Section 3) 

 
2.  Methods 
 
2.1 Parsing SQL 
The primary responsibility of the parser is to 
determine the grammatical structure of its input 
and, if well formed, construct a data structure 
containing an abstract representation of that 
input (e.g. parse tree). This is achieved by 
determining how the input is derived from the 
start symbol of the formal grammar defining the 
language. The two basic approaches for 
accomplishing this task are top-down parsing 
and bottom-up parsing [9]. 
 
 



SQL is a particularly challenging language to 
parse. Despite the fact that it was adopted as a 
standard by the American National Standards 
Institute (ANSI) in 1986 and International 
Organization for Standardization (ISO) in 1987, 
formal grammars that reliably operate across 
multiple database implementations are rare. One 
reason for this is that SQL allows a tremendous 
amount of flexibility at the expression level. 
Although this likely contributed to SQL's 
popularity, it complicates the design of parsers 
significantly. Additionally, both commercial and 
open source databases support proprietary 
extensions to the language, further complicating 
parser construction. 
 
As a result of these challenges, researchers often 
rely on parsers that support only a subset of the 
SQL language. Moreover, these parsers are 
typically selected for pragmatic reasons (e.g. 
programming language support). Accordingly, I 
am using the open source Zql parser in MLT [8]. 
Technically speaking, Zql performs no parsing 
itself; rather, it delegates responsibility for 
interpreting the input text to an internal LL(k) 
parser generated by JavaCC [10]. Zql supports a 
reasonable subset of the SQL standard, but 
notably lacks support for table-valued functions 
and the JOIN, LEFT JOIN, RIGHT JOIN, and 
FULL JOIN keywords. 
 
Though adequate for the needs of this project, 
Zql's API suffers from an ill-conceived type 
hierarchy. In no fewer than 20 places in the MLT 
source code, the Java instanceof operator is 
invoked to determine the type of a parsed object 
at runtime. Program control flow forks 
depending on the result. The ZStatement class, 
from which all SQL statements derive, illustrates 
this point nicely. Listing 2 shows the ZStatement 
class in its entirety. 
 

 
 

Listing 2. Zql’s ZStatement interface. 

 
At issue here is the fact that the interface 
provides no ability to distinguish between 
statements representing inserts, deletes, updates, 
transactions, or queries. Furthermore, in order to 
make use of a ZStatement instance in any way 
whatsoever, it must be cast to the appropriate 
type (ZDelete, ZInsert, ZUpdate, ZTransactStmt, 
ZQuery). An analogous issue is encountered 
with the ZExp class, from which all SQL 
expressions derive. 
 
2.2 Feature Definition 
We borrow from SnipSuggest the definitions of a 
feature and a feature set. 
 
Definition 1. A feature f is a function that takes a 
query as input, and returns true or false 
depending on whether a certain property holds 
on that query. 
 
Definition 2. The feature set of a query q is 
defined as: features(q) = {f | f(q) = true} 
 
Features are extracted from the FROM, SELECT, 
WHERE, ORDER BY, GROUP BY, HAVING, 
and DISTINCT clauses of a query (or nested 
query). Features have form: 
 

<clause>-<expression> 
 
For example, if attribute A from relation R were 
referenced in the SELECT clause, the 
corresponding feature would be “SELECT-R.A.”  
Features corresponding to complex expressions 
are abstracted and evaluated using a recursive 
method described in Section 2.3. 
 
2.3 Abstract Representation 
 
2.3.1 Motivation 
To motivate the need for an abstract 
representation for expressions, consider the 
following scenario. Assume we are given a 
database D containing 3 queries– Q1, Q2, and Q3. 
Each of these queries is associated with a set of 
extracted features– F1, F2, and F3 respectively.  
 



Q1: SELECT R.a, R.b FROM R WHERE R.a=1 
F1: [SELECT-R.a, SELECT-R.b, FROM-R, WHERE-R.a, 
WHERE-=_R.a,1] 
 
Q2: SELECT R.a, R.b FROM R WHERE R.a=2 
F2: [SELECT-R.a, SELECT-R.b, FROM-R, WHERE-R.a, 
WHERE-=_R.a,2] 
 
Q3: SELECT (R.d + 6) FROM R, S WHERE R.id=S.id 
AND R.a=3 
F3: [SELECT-+_R.d,6, FROM-R, FROM-S, WHERE-R.id, 
WHERE-S.id, WHERE=_R.id,S.id, WHERE-R.a, WHERE-
=_R.a,3] 
 
Assume we are presented with a new query Q for 
which we wish to identify similar queries in D. 
Let FQ be the set of features extracted from Q. 
 
Q: SELECT R.a, R.c FROM R WHERE R.a=3 
FQ: [SELECT-R.a, SELECT-R.c, FROM-R, WHERE-R.a, 
WHERE-=_R.a,3] 
 
Observe that F1, F2, and F3 have 3 features in 
common with FQ (underlined). For F1 and F2, 
those features are SELECT-R.a, FROM-R, and 
WHERE-R.a. For F3, those features are FROM-
R, WHERE-R.a, and WHERE=_R.a,3. If we 
treat all features as having equal weight, we must 
conclude that all entries in D are equally similar 
to Q by virtue of the fact that they share the same 
number of features with FQ. However, it should 
be clear that queries Q1 and Q2 are structurally 
more similar to Q, and should thus be ranked 
ahead of Q3. The literal representation employed 
in this example is too fine-grained. 
 
The same example represented in the abstract 
form used in MLT and described in Section 2.3.2 
is shown in Listing 3. In this representation, Q1 
and Q2 have 4 features in common with F, 
whereas Q3 has 3. Treating all features as equally 
important, Q1 and Q2 are correctly ranked ahead 
of Q3 in the query recommendation output, again 
by virtue of the fact that they contain a greater 
number of features in common with Q. 
 
Q1: SELECT R.a, R.b FROM R WHERE R.a=1 
F1: [SELECT-R.a, SELECT-R.b, FROM-R, WHERE-R.a, 
WHERE-=_R.a,?] 
 
Q2: SELECT R.a, R.b FROM R WHERE R.a=2 
F2: [SELECT-R.a, SELECT-R.b, FROM-R, WHERE-R.a, 
WHERE-=_R.a,?] 
 

Q3: SELECT (R.d + 6) FROM R, S WHERE R.id=S.id 
AND R.a=3 
F3: [SELECT-+_R.d,6, FROM-R, FROM-S, WHERE-R.id, 
WHERE-S.id, WHERE=_R.id,S.id, WHERE-R.a, WHERE-
=_R.a,?] 
 
Q: SELECT R.a, R.c FROM R WHERE R.a=3 
FQ: [SELECT-R.a, SELECT-R.c, FROM-R, WHERE-R.a, 
WHERE-=_R.a,?] 
 

Listing 3. The example from Section 2.3.1 
represented in the abstract format used by MLT. 

 
2.3.2 Recursive Formulation 
The process by which an arbitrarily complex 
SQL expression is transformed into an abstract 
feature string is shown in Listing 4. Recall that 
the WHERE clause in the preceding example 
contained the expression “R.a = 3.” The abstract 
representation of this expression is “=_R.a,?”. 
The constant (3) is replaced by a placeholder (?). 
 
def abstract(expr, features): 
    if expr is a constant: 
        return “?” 
    else if expr is a column name: 
        return table name + “.” + column name 
    else if expr is an expression: 
        n = num_operands(expr) 
        o = operator(expr) 
 
        # handle unary +, - 
        if n == 1 and (o == “+” or o == “-”): 
            p = expr.operand[0] 
            return abstract(p, features) 
        else: 
            result = o + “_” 
            for i = 0 to n: 
                p = expr.operand[i] 
                result += abstract(p, features) 
                if (i+1) < n: 
                    result += “,” 
            return result  
    else if expr is a query: 
        features.addAll(extractFeatures(expr)) 
        return “~” 

 
Listing 4. Pseudocode describing the process by 

which an expression is transformed into an abstract 
feature string 

 
To take a more complex example, Listing 5 
illustrates the set of features F extracted from the 
lengthy but otherwise straightforward query Q. 
 
Q: SELECT ra, dec, modelmag_r, modelmagerr_r, 
modelmag_i, modelmagerr_i, photoz.z, photoz.zerr 



FROM galaxy, photoz 
WHERE (galaxy.objid=photoz.objid) 
AND (ra BETWEEN 315.773258 AND 315.779022) 
AND (dec BETWEEN -0.968437 AND -0.966228) 
 
F: [  
FROM-galaxy, 
FROM-photoz, 
SELECT-ra 
SELECT-dec, 
SELECT-modelmag_r, 
SELECT-modelmagerr_r, 
SELECT-modelmag_i, 
SELECT-modelmagerr_i, 
SELECT-photoz.z, 
SELECT-photoz.zerr, 
WHERE-=_galaxy.objid,photoz.objid, 
WHERE-BETWEEN_ra,?,?, 
WHERE-BETWEEN_dec,?,?, 
WHERE-
AND_=_galaxy.objid,photoz.objid,BETWEEN_ra,?,?,BE
TWEEN_dec,?,?, 
] 

 
Listing 5. A concrete example illustrating the set of 

features extracted from a more complex query. 
 

2.4 Query Similarity 
 
2.4.1 tf-idf 
tf-idf is a statistical measure commonly used in 
information retrieval to rank a document's 
relevance to a user's query [11]. The computation 
of tf-idf and its extension to query similarity in 
MLT are discussed in detail below. 
 
The intuition behind tf-idf is that the importance 
of a term ti  to a particular document dj increases 
proportionally to its number of occurrences, but 
is weighted by the general importance of ti to the 
larger corpus of documents from which dj is 
drawn.  
 
The tf-idf score for term ti and document dj is: 

 
 
where tfi,j represents the term frequency of term i 
in document j, and idfi represents the inverse 
document frequency of term i in the corpus. A 
high score is obtained by having a large number 
of occurrences in a given document and few 
occurrences in the overall corpus.  
 

Inverse document frequency (idf) measures the 
general importance of a term ti. It is computed by 
taking the logarithm of the result of dividing the 
number of documents in the corpus |D| by the 
number of documents in the corpus that contain 
term ti. 

 
 
Term frequency (tf) measures the importance of 
term ti to document dj. It is computed by dividing 
the number of occurrences of ti in dj by the size 
of the document. 

 
 
2.4.2 Application of tf-idf to MLT 
tf-idf is readily adapted for use in MLT. A 
simple ranking function is computed by 
summing the tf-idf scores for each feature 
extracted from the input query. 
 
Definition 3. Given a pair of queries Qi, Qj and 
their associated feature sets Fi, Fj, similarity is 
defined by the following formula. 
 

 
 

 
 

 
 
2.4.3 Subjective, per-clause Weights 
A byproduct of computing query similarity using 
tf-idf is that relatively rare features in the input 
query receive large weights, whereas common 
features receive small weights. This has the 
effect of biasing the ranking of recommend 
queries in favor of those containing more 
selective features. 
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It may also be desirable to intentionally bias 
search in order to diversify the set of 
recommended queries. For example, most users 
understand the basic SELECT-FROM-WHERE 
paradigm in SQL. However, they may not 
understand how aggregates work. Thus, features 
containing a GROUP BY clause could be given 
additional weight. This is achieved by 
introducing a per-clause weight to the tf-idf 
computation. By default, per-clause weights are 
uniform (e.g. 1.0). 
 
2.4.4 Diversifying the Results 
Recall that the purpose of MLT is to assist non-
expert users in formulating queries based on the 
shared experience of other users of the database. 
To this end, MLT is only effective if it 
recommends a diverse set of queries that either 
introduce new SQL concepts to the user or 
identify previously unexplored portions of the 
database. 
 
One of the first things you will notice after 
implementing tf-idf is that it works too well. The 
top k recommendations are extremely similar to 
the input query. Consider the top 3 results 
returned for the query shown in Listing 7.  
 
Input query: 
SELECT count(*) 
FROM photoprimary 
WHERE htmid >= 13351851655168 
AND htmid <= 13351852703743 
 
Ranked results (decreasing order of 
relevance) 
1. (1.548096) 
select count(*) from photoprimary where (htmid >= 
9465428443136 and htmid <= 9465432637439) ; 
2. (1.548096 ) 
select count(*) from photoprimary where (htmid >= 
9459903496192 and htmid <= 9459904544767) ; 
3. (1.548096 ) 
select count(*) from photoprimary where (htmid >= 
9454279983104 and htmid <= 9454281031679) ; 
 

Listing 7. Query recommendations returned by MLT 
prior to diversification. The top 3 recommendations 
are shown above, in decreasing order of similarity. 

Similarity scores are shown in parentheses. 
 
 

These results are clearly too similar to the input 
query to be of any value to the user. They differ 
only in the choice of constants in the WHERE 
clause. 
 
Definition 4. The diversity of a set of 
recommendations R={R1, R2, …, Rk} for some 
input query Q is:  

 
 
The desired set of recommendations R* is 
maximally diverse. It contains a set of queries 
that, collectively, are minimally similar to one 
another. Of course, this criterion could be 
trivially satisfied by identifying a set of k queries 
in QR that are pairwise-least similar to one 
another, regardless of the input query. R* must be 
further constrained. 
 
In addition to maximizing the diversity function, 
R* must also maximize similarity to the input 
query Q. This is achieved by maximizing the 
function: 

 
 
When the Query Recommender is constrained by 
these criteria, a vastly improved set of 
recommendations is returned. 
 
Input query: select count(*) from photoprimary 
where (htmid >= 13351851655168 and htmid <= 
13351852703743) ; 
 
Ranked results (decreasing order of 
relevance) 
 1. (1.548096) 
select count(*) from photoprimary where (htmid >= 
15176972632064 and htmid <= 15176973680639); 
 2. (0.428301) 
select count(*) from photoobj p, specobj s where 
p.objid=s.bestobjid and (s.specclass = 3 or 
s.specclass = 4); 
 3. (0.408258) 
select objid from photoprimary where ra between 
104.433294 and 104.730872 and dec between -
56.022222 and -55.855556; 
 

Listing 8. Query recommendations returned by MLT 
after diversification. 

diversity R( ) = !similarity Ri,Rj( )
i< j

k

"

similarity Q,Ri( )
i=1

k
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3.  Evaluation 

The recommendations produced by MLT are 
quantitatively evaluated on a random sample of 
10,000 queries logged by the SDSS server from 
2002 to 2009. Syntactically invalid queries, 
duplicates, and those that contain proprietary 
SQL features are removed. Also, if the Query 
Repository contains an exact match to a user's 
query, it is not included in the set of 
recommendations. 
 
3.1 Database Statistics 
After syntactically invalid queries were removed 
from the data set, as well as duplicates and those 
containing proprietary SQL features, 1,603 
queries remained. 27,967 features were extracted 
from these queries, 1,465 of which were unique. 
The average query contained 863 characters, 
while the longest and shortest queries contained 
7,565 and 29 characters, respectively. On 
average, a query contained 17 features. The 
minimum number of features in a query was 2, 
while the maximum was 450. 
 

Clause # Occurrences 
SELECT 21,587 
FROM 1,785 

WHERE 4,559 
DISTINCT 14 
GROUP BY 1 

HAVING 1 
ORDER BY 20 

 
Table 1. Distribution of features extracted from the 

SDSS data set to SQL clauses. Note the 
underrepresentation of aggregates and ordering. 

 
3.2 Quantitative Evaluation 
 
3.2.1 Query Attribution 
Since the queries in the SDSS data set lack 
metadata, attributing a query to a specific user is 
impossible. As a result, a simple heuristic based 
on edit distance was devised for identifying pairs 
of queries predicted to have been issued 
consecutively by the same user. Specifically, 

given a pair of queries Qi and Qj, the edit 
distance between Qi and Qj is calculated using 
dynamic programming. Edit distance is 
normalized to the interval [0..1], where 1 
represents identity and 0 represents complete 
dissimilarity. If the normalized edit distance 
between Qi and Qj is between 0.6 and 0.8, the 
queries are considered to belong to the same 
session. Empirically, pairs of queries with 
normalized edit distances in this range produced 
reasonable results. 
 
3.2.2 High- and Low-quality Matches 
Using the query attribution method described 
above, sets of query pairs (Qi, Qi+1) hypothesized 
to have been issued by the same user were 
collected. Recommendation quality was 
quantitatively evaluated by tracking the number 
of times the set of recommendations for Qi 
contained Qi+1. 
 
In the evaluation procedure, we distinguish 
between high- and low-quality matches. A match 
(Qi+1, R) is considered high-quality if: 
 

 
 
The reflexivity in the definition stems from the 
fact that size of the feature set of a 
recommendation is not strictly greater than or 
equal to the size of the feature set of the query. 
Although this may be a desirable property, 
particularly in the case of query assistance, it is 
not currently enforced. 
 
In many cases, features(R) was very similar to 
features(Qi+1), but not identical. To reward such 
“near-misses,” I introduced the concept of a low-
quality match. A match is considered to be low-
quality if the intersection of features(Qi+1) and 
features(R) is sufficiently large. Overlap 
threshold is defined as:  
 

 
 
 
 

features(R)! features(Qi+1) || features(Qi+1)! features(R)

| features R( )! features Qi+1( ) |
| features Qi+1( ) |

! !



3.2.3 Results 
The query evaluation procedure described above 
was run on the set of predicted user-query pairs 
for varying values of k. The results are shown in 
Figure 1. 
 

 
Figure 1. Depicts recommendation accuracy on the 

predicted user-query pairs as a function of the 
number of recommendations. 

 
The observed results are consistent with 
expectations. Namely, the percentage of high-
quality matches increases with the number of 
recommendations. In the extreme case where 
only a single recommendation is generated, a 
high-quality match is returned approximately 
45% of the time. If we include low-quality 
matches, recommendation accuracy rises to 
68.9%. As the number of recommendations 
increases to k=10, the percentage of high-quality 
matches exceeds 75%, with a combined accuracy 
of 100%. 
 
The number of high-quality matches levels off 
around k=10 recommendations. This is likely an 
artifact of the small size of the Query Repository. 
It is important to remember that k is the 
maximum number of recommendations returned, 
not the total. If there are m < k queries in the 
Query Repository whose similarity to the input is 
non-zero, only m results are returned. 
 
Interestingly, the percentage of low-quality 
matches was approximately constant for various 

values of k. This is likely to be an artifact of the 
user-query attribution heuristic. 
 
These results, although promising, require 
additional validation. It is possible that the user-
query attribution heuristic biases the results in 
favor of the method. An additional data set with 
known user-query attribution is currently being 
collected. When a sufficient number of queries 
have been catalogued, this experiment will be 
rerun. 
 
4.  Conclusion 
In this paper, I presented an alternative approach, 
More Like This (MLT), to the problem of full-
text query recommendation. Queries are modeled 
as collections of abstracted features. Similarity 
between a pair of queries is defined in terms of 
tf-idf of their respective feature sets. 
 
The recommendations produced by MLT are 
quantitatively evaluated on a random sample of 
10,000 queries logged by the SDSS server from 
2002 to 2009. Since the queries lack metadata, 
attributing a query to a specific user is 
impossible. As a result, a simple heuristic based 
on edit distance was devised for identifying pairs 
of queries predicted to have been issued 
consecutively by the same user. Despite the 
imprecision of the query attribution method, 
recommendation quality is promising. 
 
In terms of future work, there is much to be done. 
First and foremost, I intend on integrating MLT 
functionality within an actual RDBMS. SQLite 
appears to be a good candidate. In doing so, 
additional data sets with known user-query 
attribution could be created. These “ground-truth” 
data sets would permit a more thorough analysis 
of recommendation quality. Should the results 
turn out well, I would like to qualitatively 
evaluate the recommended queries by conducting 
a series of controlled user studies. Despite their 
cost and complexity to set up, user studies are an 
excellent mechanism for gaining feedback. 
 
Another aspect of MLT that bears additional 
scrutiny is the use of subjective, per-clause 
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weights to bias the set of recommended queries. 
Empirical data has shown that most scientific 
users readily grasp SQL's SELECT-FROM-
WHERE paradigm. Gaining a better 
understanding of the interplay between idf scores 
and subjective, per-clause weighting would 
allow for the creation of a sophisticated SQL 
learning tool. 
 
5.  References 
[1] Khoussainova, N., Kwon, Y., Balazinska, M.,  
      Suciu, D. SnipSuggest: Context-Aware  
      Autocompletion for SQL. Proc. VLDB  
      Endow. 4, 1 (October 2010), 22-33. 
[2] Chatzopoulou, G., Eirinaki, M., Polyzotis, N.  
      Query Recommendations for Interactive      
      Database Exploration. SSDBM 2009, LNCS  
      5566, pp. 3–18, 2009. 
[3] Howe, B., Cole, G., Key, A., Khoussainova,  
      N. SQL is Dead; Long Live SQL: Smart  
      Services for Ad Hoc Databases. Microsoft   

      Research Whitepaper. 2010. 
 [4] Sloan Digital Sky Survey.  
      http://www.sdss.org. 
 [5] Yang, X., Procopiuc, C.M., and 
       Srivastava, D. Summarizing relational  
       databases. Proc. VLDB Endow., 2(1): 634- 
       645, 2009. 
 [6] Baeza-Yates, R., and Riberio-Neto, B.  
      Modern Information Retrieval. Addison- 
      Wesley Longman Publishing, Boston, MA,  
      1999. 
[7] ANTLR. http://www.antlr.org. 
 [8] Zql. http://zql.sourceforge.net. 
 [9] Cooper, K.D., Torczon, L. Engineering a  
     Compiler. Morgan Kaufmann Publishers, San  
     Francisco, CA, 2008. 
[10] JavaCC. http://javacc.java.net. 
[11] Sparck-Jones, Karen. A statistical  
        interpretation of term specificity and its  
        application in retrieval. Journal of  
        Documentation, 28(1): 11-21, 1972.

 


