
Sensor Data Exploration: Making Stream Data
Management Systems More Usable in Monitoring

Applications

Shengliang Xu
Computer Science & Engineering
University of Washington, Seattle

slxu@cs.washington.edu

ABSTRACT
This paper is concerned of making the sensor stream data
management systems more usable in monitoring applica-
tions for average users. The advances of sensor technologies
have promoted a large number of monitoring applications.
Stream data management systems (SDBMS) provide sophis-
ticated tooles for the users to organize the monitoring data
and set up complex event monitors. Although very power-
ful, the SDBMSes generally require the users to be both 1)
experts of their query interfaces, 2) experts in their domain
so that they know what to query, and 3) be able to precisely
describe each monitoring task in every detail since the query
languages are all rigorous. All the requirements are too re-
strictive for average users and prevent SDBMS systems from
being usable. This paper discusses a sensor stream data
exploration mechnism which is aimed at lowering the high
usage barriers of SDBMSes in monitoring applications for
average users. Specifically, a data cube based exploration
model is proposed, and two new operations, i.e. cluster-
ing and model-based slicing are designed in addition to the
traditional data cube operations. Preliminary experiments
using a hydro dataset show that the proposed exploration
mechnism can effectively help the users identify interesting
patterns.

1. INTRODUCTION
The vast advances of sensor technologies have promoted

a large number of sensing applications in various areas, e.g.
supply-chain management [22], environment monitoring, el-
der care [7] and activity recognition [9], etc.

One dominant task in sensing applications is to monitor
whether any abnormal events happen. To identify abnor-
mal events directly in the raw sensing streams is impossible
for average users. In elder health care monitoring systems
(hereafter we use this as a running example), there typically
would not be direct sensors due to privacy considerations,
such as video cameras or audio recorders. Mostly, the el-

ders are monitored by indirect sensors like motion sensors
[7], electricity usage sensors [11] or water usage sensors [10].
Therefore, the nurses cannot directly observe the conditions
of the elders or patients. To find out abnormal events man-
ually from a pool of indirect sensing data is impossible.

A great number of stream database management systems
(SDBMS) have emerged to help the users efficiently and ef-
fectively manage stream data. In general, these systems will
hide the underlying messy of raw sensor data and provide
a much easy-to-use querying interface. Some of them view
the stream data as relational and support SQL-like query
languages [4] for data processing. Some of them treat each
sensor data item as an elementary event and provide pattern
based languages[23] [17] [18] or tree style languages [20] to
find complex combinations of events.

With no doubt, all the SDBMS systems have dramatically
reduced the pain of managing the stream data for the users.
However, is a data management system and a querying in-
terface enough for the average users? For us, the answer is
definitely NO. In general all the SDBMSes require the users
to:

• master the query interfaces. It’s simply because the
query interfaces are the only way to direct the actions
of SDBMSes. However even if the users are experts in
the querying interfaces, it is still not enough to easily
set up a monitoring task. Moreover, they need to

• be domain experts. The SDBMS systems are only data
management tools. For each specific application, the
users are responsible for telling the SDBMS systems
what to query. And now the question is are the above
two experties all the SDBMSes usage requirements are
about? Not yet. Furthermore, the users need to

• be able to describe every monitoring task exactly pre-
cise. Because of the rigorousness of the query lan-
guages, if the users have any vagueness in the moni-
toring task understanding and describing, they cannot
construct a correct query.

The preceding three requirements are all too restrictive for
average users. The query interface barrier is a common us-
age problem in all database systems [13]. There have been
several research efforts try to lower this barrier, including
[16] [8] etc. In this paper, we try to focus on the latter two
barriers. In the following we identify three more concrete us-
age barriers that can be ascribed to one of the above latter
two general barriers but specific to monitoring applications.

Hereafter, an elder care monitoring application is used as a
running example for clear statement.

1. Unawared Monitoring Patterns. No matter how pro-
found in the expertise of the monitoring application
area, a user may miss some important monitoring pat-
terns. As an example, a nurse may have set up a bunch
of monitors on an elder for monitoring the motion, the
diet, and the midnight actions. But he/she may be
unaware that the frequency of shower is also a good
indicator for sickness. While in a SDBMS, there is
no way for the users to realize this useful monitoring
pattern.

2. Task/Subject Specific Information. A user may be quite
familar with SDBMS query interface, but many mon-
itoring queries need subject specific information, so
that the user cannot construct a query without enough
apriori information of the task/subject. For example, a
nurse may want to monitor an elder of whether he/she
gets up too frequently at midnight. A SQL-like query
may be like:

ALERT WHEN (SELECT COUNT(*) FROM
Whole House Activities AS H WHERE H.timestamp
within time window midnight) >=THRESH-
OLD

where time window midnight is a time window describ-
ing midnight. The question here is what is the mean-
ing of “frequently”, i.e. what should be the value of
THRESHOLD in the query? Different people may
have totally different living habits at night. It’s very
hard for the nurses to set a threshold to classify the
midnights into frequent and infrequent without enough
familarity with the monitored elder.

3. Vague Information Need. In this case, a user may be
aware that some conditions may be valuable for mon-
itoring, but he/she may not be able to clearly give
an exact description. For example, a nurse may be
aware that the midnight actions of an elder is value-
able for helth condition monitoring, but he/she may
fail to clearly identify what actions to monitor, should
it be the overall frequency of any actions or only the
toilet actions.

In view of the above usage barriers, we claim that if the
users can explore historical stream data convieneantly, the
pain that an average user may suffer can be dramatically
mitigated. For example, if a nurse can explore the historical
records of an elder’s midnight events, he/she can define the
normal midnight pattern of that elder quite accurately.

Specifically, in this paper we propose a stream data ex-
ploration system. The system is able to organize historical
monitoring data into a bunch of data cubes. Traditional
data cube operations such as drill down, roll up and slice
as well as two new operations, i.e. data cube clustering and
model-based slicing, can be carried out on the data cubes.
The data model and the operations together form an ef-
fective exploration mechnism for the users in assisting them
identifing interesting patterns, task specific information, etc.

As for experimentation, we use a HydroSense dataset [10],
which is a stream of water event records on different fixtures,
such as shower, bath faucet, kitchen faucet, etc. collected

in several houses. Preliminary experimental results show
that our data exploration mechnism is able to help the users
identify interesting patterns.

The rest of this paper is organized as follows. Section 2
lists some prior studies related to our work. In Section 3, the
data exploration mechnism is discussed in detail. In Section
4 we report the experiment results. Finally, we conclude our
work and list some future work in Section 5.

2. RELATED WORK
Research on stream databases has been investigated quite

thoroughly. A lot of systems have been proposed to process
stream data. Some representatives include [2] [5] [1] [23],
etc. These systems focus on improving stream processing
ability from various perspectives. Although these researches
do not relate to our work very much, they provide the base
of our work. In other words, without them, our work will
be meaningless.

In recent years, a trend of making the DBMS usable has
attracted a large number of audiences. Although there exists
a standard and user-friendly interface (at least comparing to
computer programming languages) across all DBMSes, i.e.
SQL, it still requires a lot of efforts for an ordinary user
to translate her/his information needs into a correct SQL
expression. Because of this, almost in every company or
organization, there will be an army of database administra-
tors, consultants, and other technical experts busily helping
users get data into and out of a database [13]. As a pioneer-
ing work, Jagadish et al. in [13] present six challenges in
using databases today. QueRIE [8] analyzes a user’s query
log, finds other users who have executed queries over similar
parts of the database, and recommends new queries to re-
trieve relevant data. Nodira et. al. in [16] proposes a similar
process to recommend query snippets to the users. Gener-
ally, these work rely on a large amount of query logs to make
personalized query recommendation. In our stream DB sys-
tems, the situation is quite different. The main problem
lies in that typically stream DBMS queries are predefined
continuous queries [5]. In general, a user will define a set
of queries at the very beginning and then leave them run-
ning in the system for a long time. Therefore, these systems
usually cannot collect a large number of query histories.

Although typical stream DB applications may be monitor-
ing events online and discarding or archiving stream data
[2] [23], historical stream data warehousing systems have
shown to be useful in many aspects. Jiawei et.al. in [12]
proposed an architecture to calculate stream cubes online.
Eric et. al. in [19] proposed a Sequence OLAP model. They
extended traditional data cube by adding pattern-based se-
quence summarization. And then they designed a SQL-like
language for the users to build sequence data cubes. The
Moirae system [6] found out that the historical information
can be very useful in improving the fine-grained clustering of
events. Many other systems have been applied to monitor-
ing applications such as web complexes [3], highway traffic
[21], and wide-scale networks [15]. These researches do not
relate to our work because they do not try to make use of
the historical stream data for improving stream DB system
usability.

3. SENSOR STREAM DATA EXPLORATION

3.1 Problem Analysis

The first step to solve a problem is to understand the
problem thoroughly. In this section, we present the analysis
of the monitoring applications. In general, three properties
are identified as listed bellow:

• Repeated Events. Since our goal is to help users iden-
tify potential interesting abnormal events from normal
events, we implicitly aim at those events that happen
repeatedly, otherwise, it is meaningless to classify an
event as abnormal or normal.

• Data Mining and Analysis. Different from the moni-
toring task of SDBMSes, our task is more like a data
mining and analysis one. For example, the identifica-
tion of the abnormal events can be scribed as a rare
pattern mining task. This property is to play an im-
portant role in data model selection for our system.

• Clustering Property. Generally speaking, the normal
events should share some similarity between each other.
In opposite, the abnormal events should be more dif-
ferent from the normal events. Therefore, we consider
the events have a clustering property, i.e. under an ap-
propriate similarity measure, the normal events most
likely tend to get clustered together and the abnormal
events do not. But note that, the normal events may
not get clustered into a single cluster. They may tend
to group into several seperate clusters. For example,
the normal kitchen usage patterns in weekdays may be
very different from those in weekends.

3.2 Data cube as data model
Before any data exploration operation can be defined and

carried out, a data model should be set up. In our system,
we make two assumptions of the underlying data.

1. Raw Monitoring Stream Data Model. The raw moni-
toring stream data is the input data that our system
is to be built on. We assume that the raw stream
data is a stream of tuples. Each tuple denotes an ele-
mentary event with two general fields, timestamp and
state. Timestamps record when the elementary event
happened. States are a set of property fields which
describe the details of the elementary events.

2. Exploration Data Model. The exploration data model
is the core data model that the users are to operate
on. We require this model to be simple so that the
users can easily understand and also suitable for data
analysis. The data models in SDBMS systems such as
relational and event streams are flexible for monitoring
tasks but are too complex or restrictive for data anal-
ysis tasks. In view of this, we find that the OLAP task
in traditional DBMS is very similar to our goal, as Jim
et. al. pointed out in [14], “Data analysis applications
look for unusual patterns in data. They categorize
data values and trends, extract statistical information,
and then contrast one category with another.”. There-
fore, we borrow the data cube model as the data model
in our exploration system.

Specifically, we model a data stream as a huge data
cube with the time dimension going to infinite as illus-
trated in Figure 1.

State

time

……

Figure 1: Stream Cube

3.2.1 Pattern based sub-cube construction
The infinite time dimension is not operable, we need a

mechnism to allow the users break the huge data cube into
smaller bounded operational units. Recall that the goal of
our task is to help users in identifying interesting abnor-
mal events among repeated events. Therefore, the smallest
operational units of our system should be these events.

Definition Event Sub Cube. An event sub cube
is a sub cube of the stream infinite cube repre-
senting an event.

Here “event” is a more general meaning than a typical con-
crete event in any other monitoring systems. For example,
an event in the elder care applications can be the group of
actions fall into the midnight time window. In this scenario,
a normal event may be the number of actions within mid-
night less than or equal to 10 and an abnormal event may
be the number of actions more than 10.

To implement the event sub cube construction, we propose
a simple patten based window language. The main part of
the syntax is as the follows:

PatternWindow := Begin Predicate; End Predicate

Predicate := Predicate and Predicate

| Predicate or Predicate

| not Predicate

| (Predicate) | Atom

Atom := Property op C

| Property op Property

| C op Property

op := < | > | >=

| <= | <> | ==

Property := state property | timestamp

| function(Property)

For example, a pattern window for midnight (from 10:00 PM
to 4:00 AM) can be defined as:

Begin hour(timestamp) >= 22; End hour(timestamp) <= 4

3.2.2 Dimension Hierarchy
As in OLAP systems, we also allow the users define hi-

erarchies on the properties of the input stream, including
both the timestamp and the state properties. For example,
in elder care monitoring applications, the monitoring of hy-
dro events requires differnt sensors in different rooms, for
example a sensor for water events of the toilet, a sensor for

Table 1: A sample event tuple stream
timestamp fixture interval fixture type
2010-02-01 08:09:59.000 Bathroom Sink 26.45097 SingleHandleFaucet
2010-02-01 08:20:38.000 Bathroom Sink 25.30426 SingleHandleFaucet
2010-02-01 08:27:25.000 Kitchen Sink 9.074509 SingleHandleFaucet
2010-02-01 20:11:19.000 Kitchen Sink 7.922266 SingleHandleFaucet
2010-02-01 21:50:05.000 Toilet 27.67681 Fixture
2010-02-01 21:50:13.000 Bathroom Sink 22.66671 SingleHandleFaucet
2010-02-01 21:58:01.000 Shower 927.2068 SingleHandleFaucet

water events of the shower. All the sensors can be organized
into rooms and the rooms can be further organized into the
house. Therefore, the house → rooms → sensors is a three-
layer hierarchy. And the same to the timestamp. Figure 2
illustrates two examples.

 Shower

Toilet

Bathroom Faucet

Kitchen Sink

Dish Washing Machine

Washing Machine

Bathroom

Kitchen

Washing
room

House

5:00 AM

1:00 PM

8:00 PM

8:00 PM

Morning

Afternoon
+ Evening

Night

Day

…

11:00 AM

4:00 AM

11:00 AM

Noon …

1:00 PM

…

…

Figure 2: Dimension Hierarchy

3.3 Operations on sub-data cubes
Since the sub-data cubes are all data cubes, all the opera-

tions on traditional data cube OLAP can be directly applied
here, including roll up, drill down, slice, etc. We do not dis-
cuss them in detail here. The traditional cube operations
all perform on a single data cube. In our goal of data ex-
ploration, these operations are not enough. Specifically, we
define two new operations, clustering of event sub cubes and
model-based slicing of event sub cubes.

3.3.1 Distance calculation between sub-data cubes
The two new operations both require a distance measure

between sub cubes. A cube is essentially a tensor. The di-
mensions are orthogonal between each other. And within
each dimension, the different cells are also independent to
each other. Therefore, it won’t lose infomation by vectoriz-
ing a cube into a vector, as illustrated in Figure 4(a). By
this simple transition, all the distance measures in Lp space
can be directly applied. However in our work, for each di-
mension, there may be an associated hierarchy structure.
This information is semantically rich and should be kept in
cube distance calculation. One way to incoporate the hi-
erarchy information into calculation is to add the non-leaf
nodes of a hierarchy structure of a dimension into that di-
mension to form a larger expanded cube, as illustrated in
Figure 3(a). But in this way, in the worst case, there may
be (2m− 1)× (original cube size) new cells, where m is the
number of dimensions. Therefore the new cells will dominate
the cube distance calculation. To mitigate this problem, we
further restrict that only the cells that contain at most one

hierarchy dimension should be considered. The cells with
more than one dimensions of hierarchy are dropped. In this
way, the will be at most (m− 1)× (original cube size) new
cells. Figure 3(b) shows the reduced cube dimension expan-
sion. And Figure 4(b) shows the vectorization of reduced
dimension expanded cubes.

h
1

h
2

h
3

h
1

h
2

h
3

v
1
 v

2

v
3

v
4

v
1
 v

2
 v

3
 v

4

(a) Cube dimension expan-
sion

h
1

h
2

h
3

h
1

h
2

h
3

v
1
 v

2

v
3

v
4

v
1
 v

2
 v

3
 v

4

(b) Reduced cube dimen-
sion expansion

Figure 3: Dimension expansion of the data cubes for
distance calculation

 h
2

h
1

v
1
 v

2

h
1
,v

1

h
1
,v

2

h
2
,v

1

h
2
,v

2

(a) Cube vectorization

h
2

h
1

h
21

h
11

v
1
 v

2
 v

11

h
1
,v

1

h
1
,v

2
 h

2
,v

2

h
2
,v

1
 h

11
,v

1

h
11
,v

2

h
21
,v

1

h
21
,v

2

h
1
,v

11

h
2
,v

11

(b) Reduced dimension expanded
cube vectorization

Figure 4: Cube vectorization for distance calculation

3.3.2 Clustering
The preceding definitions of cube vectorization and dis-

tance calculation open the door to the fantastic world of
linear algebra based data mining and analysis. Recall the
cluster property of our task, a clustering operation of the
event sub cubes can be of helpful in identifying potential
abnormal events. Based on the preceding cube distance def-
inition, the clustering operaiton can be easily implemented.
And all the standard clustering methods, such as Kmeans

or Hierarchical clustering can be applied here without any
problem.

3.3.3 Model-based slicing
The other new operation is the model-based slicing. As in

the clustering operation, the model-based slicing operation
allows the users to firstly select one or more event data cubes
as the seeds; and then the system will automatically rank all
the event data cubes according to the distance to the seed
cubes; and finally let the users to select a bunch of similar
sub data cubes and drop all the rest.

4. EXPERIMENTATION
We use the HydroSense data [10] for experimentation,

which are water event records on different fixtures, such as
shower, bath faucet, kitchen faucet, etc. collected in several
houses. In the evaluation, we focus on testing the newly
added two operations.

4.1 Clustering
In evaluating the clustering operation, we choose Kmeans

as the clustering algorithm and set the number of clusters as
8. Figure 5 shows the clustering result. The x-axis is a list of
fixtures with in the house which the data are collected, the
y-axis represents 24 hours, and the z-axis shows the number
of actions performed on a fixture at a moment. From the
graph, it is clear that the different clusters present quite
different distribuion properties. This is exactly what we
expect. The different clusters denote different patterns of
events. What we provide is a general tool for the users to
help them organize the data.

4.2 Model based Slicing
For model based slicing, we present two experimental re-

sults. Figure 6 presents the 1-seed ranking of the cubes.
And Figure 7 presents the 2-seed ranking of the cubes. The
two experiments both demonstrate the soundness of this op-
eration.

5. CONCLUSION AND FUTURE WORK
Making the data management systems more usable is a

hot research topic in recent years. A lot of research efforts
have been put into the sub area of making traditional DBMS
systems usable. As for stream data management systems,
there is not yet a research paper working on this direction.
The main contributions of this paper include 1) identifying
the difficulities in SDBMSes usage, specifically in monitor-
ing applications; 2) the proposal of the sensor stream data
browsing mechnism to assist the users managing stream data
more easier.

As we have pointed out in the introduction section that
there are generally three usage barriers. This paper focuses
only on the latter two. However, the first barrier, i.e. the
query language barrier, is also a famous bottleneck in us-
ability. As a future work, we will work on this problem too.
Generally, we will extend our system to incoporate an auto-
matic query generation phase. In addition, this paper only
discusses one data mining technique, i.e. clustering, actu-
ally our distance model can be applied to many other data
mining techniques such as classification. As a second future
work, we will investigate some more data mining methods
to aid the monitoring application users.

6. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack,

J. hyon Hwang, W. Lindner, A. S. Maskey, E. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
design of the borealis stream processing engine. In In
CIDR, pages 277–289, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for
data stream management. The VLDB Journal,
12:120–139, August 2003.

[3] M. Ahuja, C. C. Chen, R. Gottapu, J. Hallmann,
W. Hasan, R. Johnson, M. Kozyrczak, R. Pabbati,
N. Pandit, S. Pokuri, and K. Uppala. Peta-scale data
warehousing at yahoo! In Proceedings of the 35th
SIGMOD international conference on Management of
data, SIGMOD ’09, pages 855–862, New York, NY,
USA, 2009. ACM.

[4] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: semantic foundations and query
execution. The VLDB Journal, 15:121–142, June 2006.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’02, pages 1–16, 2002.

[6] M. Balazinska, Y. Kwon, N. Kuchta, and D. Lee.
Moirae: History-enhanced monitoring. In Proceedings
of the 3rd Biennial Conference on Innovative Data
Systems Research (CIDR), 2007.

[7] T. Barger, D. Brown, and M. Alwan. Health-status
monitoring through analysis of behavioral patterns.
Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 35:22 – 27, 2005.

[8] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis.
Query recommendations for interactive database
exploration. In Proceedings of the 21st International
Conference on Scientific and Statistical Database
Management, SSDBM 2009, pages 3–18, 2009.

[9] T. Choudhury, M. Philipose, D. Wyatt, and J. Lester.
Towards activity databases: Using sensors and
statistical models to summarize peopleâĂŹs lives.
IEEE Data Eng. Bull, 29:2006, 2006.

[10] J. E. Froehlich, E. Larson, T. Campbell, C. Haggerty,
J. Fogarty, and S. N. Patel. Hydrosense:
infrastructure-mediated single-point sensing of
whole-home water activity. In Proceedings of the 11th
international conference on Ubiquitous computing,
Ubicomp ’09, pages 235–244, 2009.

[11] S. Gupta, M. S. Reynolds, and S. N. Patel.
Electrisense: single-point sensing using emi for
electrical event detection and classification in the
home. In Proceedings of the 12th ACM international
conference on Ubiquitous computing, Ubicomp ’10,
pages 139–148, 2010.

[12] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah,
J. Wang, and Y. D. Cai. Stream cube: An architecture
for multi-dimensional analysis of data streams. Distrib.
Parallel Databases, 18:173–197, September 2005.

[13] H. V. Jagadish, A. Chapman, A. Elkiss,
M. Jayapandian, Y. Li, A. Nandi, and C. Yu. Making
database systems usable. In Proceedings of the 2007

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

2

4

6

8

10

12

14

16

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

2

4

6

8

10

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

0.5

1

1.5

2

2.5

3

3.5

4

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

1

2

3

4

5

6

7

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

1

2

3

4

5

6

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Figure 5: A sample clustering results for the HydroSense dataset

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

2

4

6

8

10

fixtures
hour

c
o

u
n

t
o
f

e
v
e

n
ts

(a) Seed Cube

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

1

2

3

4

5

6

7

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

1

2

3

4

5

6

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

1

2

3

4

5

6

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

1

2

3

4

5

6

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

2

4

6

8

10

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

(b) Top 5 rankded cubes

Figure 6: Model based slicing result 1. The first cube is served as a seed and the top 5 most similar cubes
are presented

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

2

4

6

8

10

12

14

16

fixtures
hour

c
o
u

n
t

o
f

e
v
e

n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

2

4

6

8

10

fixtures
hour

c
o
u

n
t

o
f

e
v
e

n
ts

(a) Two seed cubes

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

2

4

6

8

10

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

1

2

3

4

5

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

1

2

3

4

5

6

7

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

Bathroom Sink_SingleHandleFaucet
Kitchen Sink_SingleHandleFaucet

Toilet_Fixture
Shower_SingleHandleFaucet

Bath/Shower Switch_Fixture
Bath_SingleHandleFaucet

Unknown Signal_Fixture
Dishwasher_Fixture

Washing Machine_WashingMachine

01234567891011121314151617181920212223

0

1

2

3

4

5

6

7

fixtures
hour

c
o
u
n
t
o
f
e
v
e
n
ts

(b) top four ranked cubes

Figure 7: Model based slicing result 2. The first and the second cube are served as two seeds

ACM SIGMOD international conference on
Management of data, SIGMOD ’07, pages 13–24, 2007.

[14] A. B. A. L. D. R. M. V. F. P. Jim Gray,
Surajit Chaudhuri and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and Knowledge
Discovery, 1:29–53.

[15] C. P. D. S. J. v. d. M. J. A. J. Kalmanek, C.R.; Ihui
Ge; Seungjoon Lee; Lund. Darkstar: Using
exploratory data mining to raise the bar on network
reliability and performance. In Design of Reliable
Communication Networks, 2009. DRCN 2009. 7th
International Workshop on, pages 1 – 10, 2009.

[16] N. Khoussainova, Y. Kwon, M. Balazinska, and
D. Suciu. Snipsuggest: Context-aware autocompletion
for sql. Proceedings of the VLDB Endowment, 4, 2011.

[17] J. Letchner, C. Ré, M. Balazinska, and M. Philipose.
Challenges for event queries over markovian streams.
IEEE Internet Computing, 12:30–36, November 2008.

[18] J. Letchner, C. Ré, M. Balazinska, and M. Philipose.
Lahar demonstration: warehousing markovian
streams. Proc. VLDB Endow., 2:1610–1613, August
2009.

[19] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and
D. W. Cheung. Olap on sequence data. In Proceedings
of the 2008 ACM SIGMOD international conference
on Management of data, SIGMOD ’08, pages 649–660,
New York, NY, USA, 2008. ACM.

[20] Y. Mei and S. Madden. Zstream: a cost-based query
processor for adaptively detecting composite events. In
Proceedings of the 35th SIGMOD international
conference on Management of data, SIGMOD ’09,
pages 193–206, New York, NY, USA, 2009. ACM.

[21] K. Tufte, J. Li, D. Maier, V. Papadimos, R. L.
Bertini, and J. Rucker. Travel time estimation using
niagarast and latte. In Proceedings of the 2007 ACM
SIGMOD international conference on Management of
data, SIGMOD ’07, pages 1091–1093, New York, NY,
USA, 2007. ACM.

[22] F. Wang and P. Liu. Temporal management of rfid
data. In Proceedings of the 31st international
conference on Very large data bases, VLDB ’05, pages
1128–1139. VLDB Endowment, 2005.

[23] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In Proceedings
of the 2006 ACM SIGMOD international conference
on Management of data, SIGMOD ’06, pages 407–418,
New York, NY, USA, 2006. ACM.

