
CSE544
Data Management

Lectures 3: SQL

CSE 544 - Winter 2024 1

Announcements

• Review 1 was due today
• Monday, 1/15: holiday, no class
• Wednesday, 1/17: canceled
• Friday, 1/19: makeup lecture, CSE2-371
• Also Friday, 1/19: review 2 is due

CSE 544 - Winter 2024 2

Recap

SQL so far:
 SELECT-FROM-WHERE
• FROM: which tables – joins
• WHERE: condition – selections
• SELECT: which attributes – projections

• NULLs…
CSE 544 - Winter 2024 3

“A Case Against SQL”

CSE 544 - Winter 2024 4

“A Case Against SQL”

Lots of inconsistentices
• NULLs
• Duplicated attributes: SELECT A,A
• Types: 1 = ‘1’
• Corner cases:

– Empty string, division by 0, transitivity of =

CSE 544 - Winter 2024 5

GROUP-BY

CSE 544 - Winter 2024 6

Overview

• Aggregates in SQL:
– Sum, min, max, count, avg

• select agg(…) à one ouput tuple

• select A,agg(B) … group by A
 à many output tuples

CSE 544 - Winter 2024 7

Examples

CSE 544 - Winter 2024

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT max(psize)
FROM Part

max
50

Examples

CSE 544 - Winter 2024

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT pcolor, max(psize)
FROM Part
GROUP BY pcolor

SELECT max(psize)
FROM Part

max
50

color max
green 12
blue 50
gray 9
red 25
…

Examples

CSE 544 - Winter 2024

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT pcolor, max(psize)
FROM Part
GROUP BY pcolor

SELECT max(psize)
FROM Part

max
50

color max
green 12
blue 50
gray 9
red 25
…

SELECT pcolor, max(psize), sum(psize)
FROM Part
GROUP BY pcolor …

Subtleties

CSE 544 - Winter 2024 11

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT pcolor
FROM Part
GROUP BY pcolor

?

Subtleties

CSE 544 - Winter 2024 12

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT pcolor
FROM Part
GROUP BY pcolor

Same as distinct
SELECT DISTINCT pcolor
FROM Part

Subtleties

CSE 544 - Winter 2024 13

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT pcolor, pname, max(psize)
FROM Part
GROUP BY pcolor ?

SELECT pcolor
FROM Part
GROUP BY pcolor

Same as distinct
SELECT DISTINCT pcolor
FROM Part

Subtleties

CSE 544 - Winter 2024 14

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT pcolor, pname, max(psize)
FROM Part
GROUP BY pcolor

ERROR

SELECT pcolor
FROM Part
GROUP BY pcolor

Same as distinct
SELECT DISTINCT pcolor
FROM Part

Examples

CSE 544 - Winter 2024 15

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

SELECT sno, count(*)
FROM Supply
GROUP BY sno

Include the names of the suppliers

SELECT x.sno, x.sname, count(*)
FROM Supplier x, Supply y
WHERE x.sno=y.sno
GROUP BY x.sno, x.sname

WHERE v.s. HAVING

CSE 544 - Winter 2024 16

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in ‘WA’
SELECT x.sno, x.sname, sum(y.qty)
FROM Supplier x, Supply y
WHERE x.sno=y.sno and x.sstate=‘WA’
GROUP BY x.sno, x.sname

WHERE v.s. HAVING

CSE 544 - Winter 2024 17

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in ‘WA’
SELECT x.sno, x.sname, sum(y.qty)
FROM Supplier x, Supply y
WHERE x.sno=y.sno and x.sstate=‘WA’
GROUP BY x.sno, x.sname

Compute the total quantity supplied by each supplier
who supplied > 100 parts

WHERE v.s. HAVING

CSE 544 - Winter 2024 18

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in ‘WA’
SELECT x.sno, x.sname, sum(y.qty)
FROM Supplier x, Supply y
WHERE x.sno=y.sno and x.sstate=‘WA’
GROUP BY x.sno, x.sname

Compute the total quantity supplied by each supplier
who supplied > 100 parts

SELECT x.sno, x.sname, sum(y.qty)
FROM Supplier x, Supply y
WHERE x.sno=y.sno
GROUP BY x.sno, x.sname
HAVING count(*) > 100

Semantics
SELECT a1, …, ak, agg1, agg2
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE condition1(a1, …, ak, b1,…,bn)
GROUP BY a1, …, ak
HAVING condition2(a1, …, ak,agg3,agg4)

Semantics
SELECT a1, …, ak, agg1, agg2
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE condition1(a1, …, ak, b1,…,bn)
GROUP BY a1, …, ak
HAVING condition2(a1, …, ak,agg3,agg4)

Step 1: FROM-WHERE

a1 … ak b1 … b1

Check
WHERE condition1
in each row

Semantics
SELECT a1, …, ak, agg1, agg2
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE condition1(a1, …, ak, b1,…,bn)
GROUP BY a1, …, ak
HAVING condition2(a1, …, ak,agg3,agg4)

Step 1: FROM-WHERE

a1 … ak b1 … b1

Check
WHERE condition1
in each row

Semantics
SELECT a1, …, ak, agg1, agg2
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE condition1(a1, …, ak, b1,…,bn)
GROUP BY a1, …, ak
HAVING condition2(a1, …, ak,agg3,agg4)

Step 1: FROM-WHERE

a1 … ak b1 … b1

Semantics

Step 2: GROUP BY

a1 … ak b1 … b1
u … v
u v
p q
p q
p q

All attributes a1, …, ak,
have the same value
inside each group

SELECT a1, …, ak, agg1, agg2
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE condition1(a1, …, ak, b1,…,bn)
GROUP BY a1, …, ak
HAVING condition2(a1, …, ak,agg3,agg4)

Semantics

Step 3: HAVING

a1 … ak b1 … b1
u … v
u v
p q
p q
p q

Check condition2
in each group

SELECT a1, …, ak, agg1, agg2
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE condition1(a1, …, ak, b1,…,bn)
GROUP BY a1, …, ak
HAVING condition2(a1, …, ak,agg3,agg4)

Semantics

Step 3: HAVING

a1 … ak b1 … b1
u … v
u v
p q
p q
p q

Check condition2
in each group

SELECT a1, …, ak, agg1, agg2
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE condition1(a1, …, ak, b1,…,bn)
GROUP BY a1, …, ak
HAVING condition2(a1, …, ak,agg3,agg4)

Semantics

Step 3: HAVING

a1 … ak b1 … b1
u … v
u v
p q
p q
p q

SELECT a1, …, ak, agg1, agg2
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE condition1(a1, …, ak, b1,…,bn)
GROUP BY a1, …, ak
HAVING condition2(a1, …, ak,agg3,agg4)

Semantics

Step 4: SELECT

a1 … ak b1 … b1
u … v
u v
p q
p q
p q

a1 … ak agg1 agg2
u … v
p q

Each group à one output

SELECT a1, …, ak, agg1, agg2
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE condition1(a1, …, ak, b1,…,bn)
GROUP BY a1, …, ak
HAVING condition2(a1, …, ak,agg3,agg4)

Discussion

• GROUP-BY is very versatile in SQL
• No analogous in programming

languages: use nested loops instead

28

SELECT x.sno, count(*)
FROM Supplier x, Supply y
WHERE x.sno=y.sno
GROUP BY x.sno

Discussion

• GROUP-BY is very versatile in SQL
• No analogous in programming

languages: use nested loops instead

29

SELECT x.sno, count(*)
FROM Supplier x, Supply y
WHERE x.sno=y.sno
GROUP BY x.sno

for x in Supplier:
 c = 0
 for y in Supply:
 if x.sno==y.sno:
 c = c+1

Discussion

• GROUP-BY is very versatile in SQL
• No analogous in programming

languages: use nested loops instead

• The empty group problem: in SQL no
group can be empty. Outer joins!

30

SELECT x.sno, count(*)
FROM Supplier x, Supply y
WHERE x.sno=y.sno
GROUP BY x.sno

for x in Supplier:
 c = 0
 for y in Supply:
 if x.sno==y.sno:
 c = c+1

Empty Groups Problem

• Every group is non-empty
• Consequences:

– count(*) > 0
– sum(…) > 0 (assuming numbers are >0)

• Sometimes we want to return 0 counts:
– Parts that never sold
– Suppliers that never supplied

• Use outer joins: count(…) skips NULLs

31

Empty Groups Problem

32

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Empty Groups Problem

33

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Suppliers who never
supplied any part
will be missing:
count(*) > 0

SELECT x.sno, count(*)
FROM Supplier x, Supply y
WHERE x.sno=y.sno
GROUP BY x.sno

Empty Groups Problem

34

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Suppliers who never
supplied any part
will be missing:
count(*) > 0

SELECT x.sno, count(*)
FROM Supplier x, Supply y
WHERE x.sno=y.sno
GROUP BY x.sno

SELECT x.sno, count(y.sno)
FROM Supplier x
 LEFT OUTER JOIN Supply y
ON x.sno=y.sno
GROUP BY x.sno

Now we can get
count(*)=0

Empty Groups Problem

35

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Suppliers who never
supplied any part
will be missing:
count(*) > 0

SELECT x.sno, count(*)
FROM Supplier x, Supply y
WHERE x.sno=y.sno
GROUP BY x.sno

SELECT x.sno, count(y.sno)
FROM Supplier x
 LEFT OUTER JOIN Supply y
ON x.sno=y.sno
GROUP BY x.sno

Now we can get
count(*)=0

Cannot write
count(*). Why?

OUTER JOIN

CSE 544 - Winter 2024 36

Outer Joins

• A join returns only those outputs that
have a tuple from each of the input
tables

• Sometimes we want to include tuples
from one table without a match from the
other table:

Outer Join

CSE 544 - Winter 2024 37

Outer joins

38

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

Name Category
Gizmo gadget
Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz
Camera Ritz
Camera Wiz

Product Purchase

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

Name Category
Gizmo gadget
Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz
Camera Ritz
Camera Wiz

Product Purchase Output

missing

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Name Category Store
Gizmo gadget Wiz
Camera Photo Ritz
Camera Photo Wiz

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

Name Category
Gizmo gadget
Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz
Camera Ritz
Camera Wiz

Product Purchase Output

Now it’s present

SELECT x.name, x.category, y.store
FROM Product x LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Name Category Store
Gizmo gadget Wiz
Camera Photo Ritz
Camera Photo Wiz
OneClick Photo NULL

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Left Outer Join (Details)

from R left outer join S on C1 where C2

1. Compute cross product R×S

2. Filter on C1

3. Add all R records without a match

4. Filter on C2
CSE 544 - Winter 2024 43

Left Outer Join (Details)

CSE 544 - Winter 2024 44

select ...
from R left outer join S on C1
where C2

Tmp = {}
for x in R do // left outer join using C1
 for y in S do
 if C1 then Tmp = Tmp È {(x,y)}
for x in R do
 if not (x in Tmp) then Tmp = Tmp È {(x,NULL)}

Answer = {} // apply condition C2
for (x,y) in Tmp if C2 then Answer = Answer È {(x,y)}
return Answer

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

45

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
 AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Product(name, category)
Purchase(prodName, store, price)

prodName
is foreign Key

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

46

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
 AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Includes products
that were never
purchased with

price < 10

prodName
is foreign Key

Product(name, category)
Purchase(prodName, store, price)

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

47

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
 AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Includes products
that were never
purchased with

price < 10

Includes products
that were never

purchased,
then checks price <10

prodName
is foreign Key

Product(name, category)
Purchase(prodName, store, price)

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

48

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
 AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Includes products
that were never
purchased with

price < 10

Includes products
that were never

purchased,
then checks price <10

Same as
inner join!

prodName
is foreign Key

Product(name, category)
Purchase(prodName, store, price)

Joins

• Inner join = includes only matching
tuples (i.e. regular join)

• Left outer join = includes everything
from the left

• Right outer join = includes everything
from the right

• Full outer join = includes everything

CSE 544 - Winter 2024 49

Discussion

• LEFT OUTER JOIN is
useful for one-to-many
relationships

• Interaction between
different types of joins
makes optimization
difficult

CSE 544 - Winter 2024 50

Subqueries

CSE 544 - Winter 2024 51

Subqueries

• A subquery is a self-contained SQL
query that occurs inside another query

• The subquery can be any of these
clauses:
– SELECT
– FROM
– WHERE
– HAVING

CSE 544 - Winter 2024 52

Subqueries in SELECT

CSE 544 - Winter 2024 53

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the number of
products manufactured in that city

Subqueries in SELECT

CSE 544 - Winter 2024 54

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the number of
products manufactured in that city
SELECT DISTINCT x.city, (SELECT count(*)
 FROM Product y
 WHERE x.cid = y.cid)
FROM Company x

Subqueries in SELECT

CSE 544 - Winter 2024 55

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the number of
products manufactured in that city
SELECT DISTINCT x.city, (SELECT count(*)
 FROM Product y
 WHERE x.cid = y.cid)
FROM Company x

This is not nice SQL style. Unnest the query to:

SELECT x.city, count(*)
FROM Company x, Product y
WHERE x.cid=y.cid
GROUP BY x.city

Subqueries in SELECT

CSE 544 - Winter 2024 56

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the number of
products manufactured in that city
SELECT DISTINCT x.city, (SELECT count(*)
 FROM Product y
 WHERE x.cid = y.cid)
FROM Company x

This is not nice SQL style. Unnest the query to:

SELECT x.city, count(*)
FROM Company x, Product y
WHERE x.cid=y.cid
GROUP BY x.city

Correction:

SELECT x.city, count(y.cid)
FROM Company x LEFT OUTER JOIN
Product y ON x.cid=y.cid
GROUP BY x.city

Subqueries in FROM

CSE 544 - Winter 2024 57

Product (pname, price, cid)
Company(cid, cname, city)

List all products manufactured in Seattle
and their manufacturers names

SELECT x.cname, y.pname
FROM (SELECT * FROM Company WHERE city=‘Seattle’) x, Product y
WHERE x.cid=y.cid

Subqueries in FROM

CSE 544 - Winter 2024 58

Product (pname, price, cid)
Company(cid, cname, city)

List all products manufactured in Seattle
and their manufacturers names

SELECT x.cname, y.pname
FROM (SELECT * FROM Company WHERE city=‘Seattle’) x, Product y
WHERE x.cid=y.cid

This is not nice SQL style. Unnest the query to:

SELECT x.cname, y.pname
FROM x, Product y
WHERE x.cid=y.cid and x.city=‘Seattle’

Subqueries in WHERE

CSE 544 - Winter 2024 59

Existential quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies that
make some products
with price < 200

Subqueries in WHERE

CSE 544 - Winter 2024 60

SELECT C.cid, C.cname
FROM Company C
WHERE EXISTS (SELECT *
 FROM Product P
 WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies that
make some products
with price < 200

Subqueries in WHERE

CSE 544 - Winter 2024 61

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price < 200)

Existential quantifiers

Using IN

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies that
make some products
with price < 200

Subqueries in WHERE

CSE 544 - Winter 2024 62

SELECT C.cid, C.cname
FROM Company C
WHERE 200 > ANY (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)

Existential quantifiers

Using ANY:

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies that
make some products
with price < 200

Subqueries in WHERE

CSE 544 - Winter 2024 63

SELECT DISTINCT C.cid, C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy ! J

Existential quantifiers

Now let’s unnest it:

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies that
make some products
with price < 200

Subqueries in WHERE

CSE 544 - Winter 2024 64

Find all
companies
that make only
products with
price < 200

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2024 65

Find all companies
where all products
have price < 200

Find all
companies
that make only
products with
price < 200

same as: Universal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2024 66

Find all companies
where all products
have price < 200

Universal quantifiers are hard ! L

Find all
companies
that make only
products with
price < 200

same as: Universal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2024 67

1. Find the other companies: i.e. s.t. some product ³ 200

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 200)

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2024 68

2. Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product ³ 200

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 200)

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 200)

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2024 69

SELECT C.cid, C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *
 FROM Product P
 WHERE P.cid = C.cid and P.price >= 200)

Using EXISTS:

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies
where all products
have price < 200

Find all
companies
that make only
products with
price < 200

same as: Universal quantifiers

Subqueries in WHERE

CSE 544 - Winter 2024 70

SELECT C.cid, C.cname
FROM Company C
WHERE 200 > ALL (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)

Using ALL:

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies
where all products
have price < 200

Find all
companies
that make only
products with
price < 200

same as: Universal quantifiers

Discussion

• SQL has a natural semantics based on
the existential quantifier

• For a universal quantifier, we have
several options:
– Use double negation:

 ∀𝑥𝑃(𝑥) = ¬¬∀𝑥𝑃(𝑥) = ¬∃𝑥¬𝑃(𝑥)
– Use aggregates: count(*)=0. But

remember empty groups!
CSE 544 - Winter 2024 71

Finding Witnesses
a.k.a. ARGMAX

CSE 544 - Winter 2024 72

Argmax

• Find the city with the largest population
• Find product/products with largest price
• Common theme: we want the witness

for that largest value
• SQL does not have ARGMAX; there

several ways around that.

CSE 544 - Winter 2024 73

ARGMAX

CSE 544 - Winter 2024 74

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the name of the most expensive product
manufactured in that city

ARGMAX

CSE 544 - Winter 2024 75

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the name of the most expensive product
manufactured in that city

Solution 1: compute (city,max(price)) in subquery

SELECT DISTINCT x.city, y.pname
FROM Company x, Product y,
 (SELECT u.city, max(v.price) as p
 FROM Company u, Product v
 WHERE u.cid = v.cid) z
WHERE x.cid = y.cid
 and x.city=z.city
 and y.price=z.p

ARGMAX

CSE 544 - Winter 2024 76

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the name of the most expensive product
manufactured in that city

Solution 2: use NOT EXISTS

SELECT DISTINCT x.city, y.pname
FROM Company x, Product y
WHERE x.cid = y.cid
 and NOT EXISTS (SELECT * FROM Company u, Product v
 WHERE u.cid=v.cid
 and x.city=u.city
 and x.city=u.city
 and v.price > y.price)

ARGMAX

CSE 544 - Winter 2024 77

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the name of the most expensive product
manufactured in that city

Solution 3 my favoriteJ: use GROUP-BY and HAVING

SELECT x.city, y.pname
FROM Company x, Product y, Company u, Product v
WHERE x.cid = y.cid and u.cid = v.cid
 and x.city=u.city
GROUP BY x.city, y.pname
HAVING y.price >= max(v.price)

Summary

• Topics we covered should be enough to
write almost any query

• Be mindful of what the optimizer can do:
– select-from-where-groupby can be

optimized efficiently
– Complex, nested queries, less so

• What we left out:
– Recursion (à datalog), window operations

78

