CSE544
 Data Management

Lecture 12

Annoucements

- No lecture Monday, 2/19
- No lecture Wednesday, 2/21
- Makeup lecture Friday, 2/23 - Gates371
- Also Friday 2/23: HW3 is due
- Project milestone due Monday, 2/26

Query Optimization

Three major components:

1. Search space
2. Cardinality and cost estimation
3. Plan enumeration algorithms today
last week
last lecture

Paper Discussion

- How Good Are Query Optimizers, Really? VLDB'2015
[How good are they]

Questions in the paper

- How good are cardinality estimators?
- How important are they for the optimizer?
- How large does the plan space need to be?
[How good are they]

Cardinality Estimators

- Standard database benchmark: TPC-H
- They designed a new benchmark. Why?
[How good are they]

Cardinality Estimators

- Standard database benchmark: TPC-H
- They designed a new benchmark. Why?
- Because TPC-H is synthetically generated, unrealistically uniform
[How good are they]

Cardinality Estimators

What type of queries are in IMDB/JOB?

[How good are they]

Cardinality Estimators

What type of queries are in IMDB/JOB?

- For CE: select * multijoin queries
- For runtime: replace * with min

Why?
[How good are they]

Cardinality Estimators

What type of queries are in IMDB/JOB?

- For CE: select * multijoin queries
- For runtime: replace * with min

Why?

- Materializing * is expensive...
- ...and postgres does not push min down the plan
[How good are they]

Single Table Estimation

	median	90th	95 th	max
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	43.4
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Table 1: Q-errors for base table selections
[How good are they]

Single Table Estimation

What technique helped here?

				(conjectured)	
	median	90th	95 th		
PostgreSQL	1.00	2.08	6.10	207	
DBMS A	1.01	1.33	1.98	43.4	
DBMS B	1.00	6.03	30.2	104000	
DBMS C	1.06	1677	5367	20471	
HyPer	1.02	4.47	8.00	2084	

Table 1: Q-errors for base table selections

[How good are they]

Single Table Estimation

What technique helped here?

	median	90th	95 tin	
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	43.4
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Table 1: Q-errors $\begin{gathered}\text { Sampling. } \\ \text { E.g. Hyper: } \\ 1000 \text { rows }\end{gathered}$ elections
[How good are they]

Single Table Estimation

	median	90th	95th	max
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	43.4
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Table 1: Q-errors for base table selections
[How good are they]

Single Table EstirWhy queries still lead to poor estimates?
PostgreSQL
median
---:
DBMS A
6.10
DBMS B
1.98
DBMS C
HyPer

Table 1: Q-errors for base table selections
[How good are they]

[How good are they]

Single Table Estimation

- 1d Histograms:
- Good for single equality or range predicate
- Poor for multiple predicates
- Useless for LIKE
- Samples:
- Good for multiple predicates, LIKE
- Poor for low selectivity predicates

[How good are they]

Joins (0 to 6)

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

[How good are they]

Joins (0 to 6)

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)
[How good are they]

Estimation of Joins

- Error increases exponentially with the number of joins
- This was known from [loannidis'91]
- Underestimate, because of positive correlations

[How good are they]

TPC-H v.s. Real Data (IMDB)

[How good are they]

TPC-H v.s. Real Data (IMDB)

Impact of Mis-estimates

- Question: how much does a good/poor CE matter for the quality of a query plan
- How did they measure that?

Impact of Mis-estimates

- Question: how much does a good/poor CE matter for the quality of a query plan
- How did they measure that?
- Inject into postgres other systems' estimates - won't discuss this
- Inject into postgres true cardinalities; call it optimal plan, compare with regular plan
- Two configs of indexes: PK and PK+FK

[How good are they]

Impact of Mis-estimates

PK indexes

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)
[How good are they]

Impact of Mis-estimates

PK indexes

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)
[How good are they]

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)

[How good are they]

Impact of Mis-estimates

PK indexes

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)
[How good are they]

Impact of Mis-estimates

PK indexes

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)
[How good are they]

Impact of Mis-estimates

PK indexes

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)
[How good are they]

Impact of Mis-estimates

PK indexes

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)

Impact of Mis-estimates

Indexes on PK only

- Low sensitivity to CE, because the "fact" table needs to be scanned anyway
- Plans most sensitive to CE errors:
- Plans with nested-loop joins
- Hash-table preallocation
- Discuss "robust query optimization"

[How good are they]

Impact of Mis-estimates

FK/PK indexes

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)

[How good are they]

Impact of Mis-estimates

FK/PK indexes

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)

Discussion

- When PK indexes only, optimizer chooses a good plan anyway; impact of CE is limited; confirmed by others too
- When indexes on PK+FK, performance improves, but sensitivity to CE higher
[How good are they]

Cardinalities to Cost

[How good are they]

Cardinalities to Cost

[How good are they]

Cardinalities to Cost

[How good are they]

Cardinalities to Cost

[How good are they]

Cardinalities to Cost

- CE accounts tor largest errors
- Cost models: botı simple or complex are fine

Query Optimization

Three major components:

1. Search space
2. Cardinality and cost estimation
3. Plan enumeration algorithms today
last week
last lecture

Two Types of Optimizers

- Heuristic-based optimizers
- Limited, used only by the simplest DBMS
- Cost-based optimizers (next)
- Enumerate query plans, return the cheapest

Two Types of Plan

Enumeration Algorithms

- Dynamic programming
- Based on System R [Selinger 1979]
- Join reordering algorithm
- Cascades optimizer

System R Optimizer

For each subquery $Q \subseteq\left\{R_{1}, \ldots, R_{n}\right\}$, compute best plan:

- Step 1: $Q=\left\{R_{1}\right\},\left\{R_{2}\right\}, \ldots,\left\{R_{n}\right\}$
- Step 2: $Q=\left\{R_{1}, R_{2}\right\},\left\{R_{1}, R_{3}\right\}, \ldots,\left\{R_{n-1}, R_{n}\right\}$
- Step $\mathrm{n}: ~ \mathrm{Q}=\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}$

Details

For each subquery $\mathrm{Q} \subseteq\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}$ store:

- Estimated Size(Q)
- A best plan for Q: Plan(Q)
- The cost of that plan: $\operatorname{Cost}(\mathrm{Q})$

One plan for each
"interesting order"

Details

Step 1: single relations $\left\{R_{1}\right\},\left\{R_{2}\right\}, \ldots,\left\{R_{n}\right\}$

- Consider all possible access paths:
- Sequential scan, or
- Index 1, or
- Index 2, or
- Keep optimal plan for each "interesting order"

Details

Step $\mathrm{k}=2 . . \mathrm{n}$:

For each $Q=\left\{R_{i_{1}}, \ldots, R_{i_{k}}\right\}$

- For each $\mathrm{j}=1, \ldots, \mathrm{k}$:
- Consider all plans of the form $P=P_{1} \bowtie P_{2}$
$-\operatorname{Cost}(P)=\operatorname{Cost}(\bowtie)+\operatorname{Cost}\left(P_{1}\right)+\operatorname{Cost}\left(P_{2}\right)$
- Keep the cheapest plan, or
- Keep multiple plans, for "interesting orders"

Runtime: exponential in n .
Mitigated by: no cartesian products, restricted plan shapes
[How good are they]

Importance of the Plan Space

- Do we need to explore a large space, or should we pick a plan at random?
- Do we need bushy trees, or are left-, or right-, or zigzag-trees enough?
- Do we need dynamic programming, or is greedy enough?

[How good are they]

Figure 9: Cost distributions for 5 queries and different index configurations. The vertical green lines represent the cost of the optimal plan

[How good are they]

Figure 9: Cost distributions for 5 queries and different index configurations. The vertical green lines represent the cost of the optimal plan
[How good are they]

	PK indexes			PK + FK indexes		
	median	95%	\max	median	95%	\max
zig-zag	1.00	1.06	1.33	1.00	1.60	2.54
left-deep	1.00	1.14	1.63	1.06	2.49	4.50
right-deep	1.87	4.97	6.80	47.2	30931	738349

Table 2: Slowdown for restricted tree shapes in comparison to the optimal plan (true cardinalities)
[How good are they]

	PK indexes			Generally, not much worse than optimal... PK + FK indexes		
	median	95\%	max	median	95\%	max
zig-zag	1.00	1.06	1.33	1.00	1.60	2.54
left-deep	1.00	1.14	1.63	1.06	2.49	4.50
right-deep	1.87	4.97	6.80	47.2	30931	738349

Table 2: Slowdown for restricted tree shapes in comparison to the optimal plan (true cardinalities)
[How good are they]

	PK indexes			Generally, not much worse than optimal... PK + FK indexes		
	median	95\%	max	median	95\%	max
zig-zag	1.00	1.06	1.33	1.00	1.60	2.54
left-deep	1.00	1.14	1.63	1.06	2.49	4.50
right-deep	1.87	4.97	6.80	47.2	30931	738349

Table 2: Slowdown for restricted tree shapes in compari 1 to the optimal plan (tome. acordinalities)

...except here.
Right-deep plans prevent index joins.

[How good are they]

	PK indexes						PK + FK indexes					
	PostgreSQL estimates			true cardinalities			PostgreSQL estimates			true cardinalities		
	median	95\%	max									
Dynamic Programming	1.03	1.85	4.79	1.00	1.00	1.00	1.66	169	186367	1.00	1.00	1.00
Quickpick-1000	1.05	2.19	7.29	1.00	1.07	1.14	2.52	365	186367	1.02	4.72	32.3
Greedy Operator Ordering	1.19	2.29	2.36	1.19	1.64	1.97	2.35	169	186367	1.20	5.77	21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

Cascades Optimizer

- Extends join ordering to full rewrite
- Supported by some of the most advanced DBMS today: SQL Server, Cocroach Lab; (not sure about DuckDB)
- Mostly "insider knowledge"

Cascades Optimizer

- Main idea: apply optimization rules:

$$
Q \rightarrow Q^{\prime}
$$

- But keep both Q and Q'
- "Memo" data structure: reuses subplans

```
select * from R, S, T where R.B=S.B and S.C=T.C and R.A \(=3\) and T.D \(=5\)
```


The Memo

Initialize Memo
w/ one (naïve) plan

$$
\sigma_{D=5}
$$

R
$R(A, B), S(B, C), T(C, D)$

```
select * from R, S, T where R.B=S.B and S.C=T.C and R.A \(=3\) and \(T . D=5\)
```


The Memo

Scan R

$$
\begin{gathered}
\text { Initialize Memo } \\
\text { w/ one (naïve) } \\
\text { plan }
\end{gathered}
$$

$$
\sigma_{D=5}
$$

$$
\mid
$$

$R(A, B), S(B, C), T(C, D)$
The Memo
select *
from R, S, T where R.B=S.B and S.C=T.C and R.A $=3$ and $T . D=5$

Initialize Memo w/ one (naïve) plan

$R(A, B), S(B, C), T(C, D)$

The Memo

$$
\begin{aligned}
& \text { Initialize Memo } \\
& \text { w/ one (naïve) } \\
& \text { plan }
\end{aligned}
$$

select *
from R, S, T where R.B=S.B and S.C=T.C and R.A $=3$ and T.D $=5$
$R(A, B), S(B, C), T(C, D)$

The Memo

$R(A, B), S(B, C), T(C, D)$

The Memo

> Apply an optimization rule

$$
\sigma_{D=5}^{\stackrel{7}{7}}
$$

(6)

$\sigma_{A=3}$
S
R
select *
from R, S, T where R.B=S.B and S.C=T.C and R.A $=3$ and $T . D=5$
$R(A, B), S(B, C), T(C, D)$

The Memo

select * from R, S, T where R.B=S.B and S.C=T.C and R.A $=3$ and T.D $=5$

$R(A, B), S(B, C), T(C, D)$

The Memo

(1) Scan R

select *
from R, S, T where R.B=S.B and S.C=T.C and R.A $=3$ and $T . D=5$

$R(A, B), S(B, C), T(C, D)$

The Memo

(1) Scan R
(2) $\operatorname{Select}[A=3] 1$

3	Scan S
4	Join[B=B] 2, 3
5	Scan T
	Join[C=C] 4,5

(7) Select[D=5] $6 \quad$ Join[C=C] 4,8

8
Select[D=5] 5
select * from R, S, T where R.B=S.B and S.C=T.C and R.A $=3$ and T.D $=5$

$R(A, B), S(B, C), T(C, D)$

The Memo

$R(A, B), S(B, C), T(C, D)$

The Memo

select *
from R, S, T where R.B=S.B and $\mathrm{S} . \mathrm{C}=\mathrm{T} . \mathrm{C}$ and R.A $=3$ and $T . D=5$
$R(A, B), S(B, C), T(C, D)$

The Memo

select * from R, S, T where R.B=S.B and S.C=T.C and R.A $=3$ and $T . D=5$
Apply another rule
$R(A, B), S(B, C), T(C, D)$

The Memo

select *
from R, S, T where R.B=S.B and S.C=T.C and R.A $=3$ and $T . D=5$
(2) $\operatorname{Select}[A=3] 1$

Conclusions

- Query optimizers: some of the most complex systems in use today

Query optimization is not rocket science.
If you fail at query optimization, they send you to build rockets.

Anonymous

