CSE544 Data Management Lecture 12

Annoucements

- No lecture Monday, 2/19
- No lecture Wednesday, 2/21
- Makeup lecture Friday, 2/23 Gates371
- Also Friday 2/23: HW3 is due
- Project milestone due Monday, 2/26

Query Optimization

Three major components:

1. Search space

last week

today

- 2. Cardinality and cost estimation last lecture
- 3. Plan enumeration algorithms

Paper Discussion

 How Good Are Query Optimizers, Really? VLDB'2015

Questions in the paper

• How good are cardinality estimators?

• How important are they for the optimizer?

How large does the plan space need to be?

Cardinality Estimators

• Standard database benchmark: TPC-H

• They designed a new benchmark. Why?

Cardinality Estimators

• Standard database benchmark: TPC-H

• They designed a new benchmark. Why?

• Because TPC-H is synthetically generated, unrealistically uniform

Cardinality Estimators

What type of queries are in IMDB/JOB?

Cardinality Estimators

What type of queries are in IMDB/JOB?

- For CE: select * multijoin queries
- For runtime: replace * with min Why?

Cardinality Estimators

What type of queries are in IMDB/JOB?

- For CE: select * multijoin queries
- For runtime: replace * with min Why?

- Materializing * is expensive...
- ...and postgres does not push min down the plan

Single Table Estimation

	median	90th	95th	max
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	43.4
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Single Table Estimation									
U		W ł	What technique helped here?						
	median	90th	95tm	conjectured)					
PostgreSQL	1.00	2.08	6.10	207					
DBMS A	1.01	1.33	1.98	43.4					
DBMS B	1.00	6.03	30.2	104000					
DBMS C	1.06	1677	5367	20471					
HyPer	1.02	4.47	8.00	2084					

Single Table Estimation

	median	90th	95th	max
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	(43.4)
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Single Table Estir Why queries still lead to poor estimates?								
	median	90th	95th	ax				
PostgreSQL	1.00	2.08	6.10	√207				
DBMS A	1.01	1.33	1.98	43.4				
DBMS B	1.00	6.03	30.2	104000				
DBMS C	1.06	1677	5367	20471				
HyPer	1.02	4.47	8.00	2084				

Single Table Estimation

- 1d Histograms:
 - Good for single equality or range predicate
 - Poor for multiple predicates
 - Useless for LIKE
- Samples:
 - Good for multiple predicates, LIKE
 - Poor for low selectivity predicates

Joins (0 to 6)

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

CSE 544 - Winter 2024

Joins (0 to 6)

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

Estimation of Joins

- Error increases exponentially with the number of joins
 - This was known from [loannidis'91]

Underestimate, because of positive correlations

TPC-H v.s. Real Data (IMDB)

TPC-H v.s. Real Data (IMDB)

- Question: how much does a good/poor
 CE matter for the quality of a query plan
- How did they measure that?

- Question: how much does a good/poor CE matter for the quality of a query plan
- How did they measure that?
 - Inject into postgres other systems' estimates – won't discuss this
 - Inject into postgres true cardinalities; call it optimal plan, compare with regular plan
- Two configs of indexes: PK and PK+FK

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)

30

Figure 6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (primary key indexes only)

Indexes on PK only

- Low sensitivity to CE, because the "fact" table needs to be scanned anyway
- Plans most sensitive to CE errors:
 - Plans with nested-loop joins
 - Hash-table preallocation
- Discuss "robust query optimization"

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)

Discussion

 When PK indexes only, optimizer chooses a good plan anyway; impact of CE is limited; confirmed by others too

• When indexes on PK+FK, performance improves, but sensitivity to CE higher

Query Optimization

Three major components:

1. Search space

last week

today

- 2. Cardinality and cost estimation last lecture
- 3. Plan enumeration algorithms

Two Types of Optimizers

- Heuristic-based optimizers
 - Limited, used only by the simplest DBMS
- Cost-based optimizers (next)
 - Enumerate query plans, return the cheapest

Two Types of Plan Enumeration Algorithms

- Dynamic programming
 - Based on System R [Selinger 1979]
 - Join reordering algorithm
- Cascades optimizer

System R Optimizer

For each subquery $Q \subseteq \{R_1, ..., R_n\}$, compute best plan:

- Step 1: $Q = \{R_1\}, \{R_2\}, ..., \{R_n\}$
- Step 2: $Q = \{R_1, R_2\}, \{R_1, R_3\}, \dots, \{R_{n-1}, R_n\}$
- ...
- Step n: $Q = \{R_1, ..., R_n\}$

Details

For each subquery $Q \subseteq \{R_1, ..., R_n\}$ store:

Estimated Size(Q)

• A best plan for Q: Plan(Q)

The cost of that plan: Cost(Q)

One plan for each "interesting order"

Details

Step 1: single relations $\{R_1\}, \{R_2\}, \dots, \{R_n\}$

- Consider all possible access paths:
 - Sequential scan, or
 - Index 1, or
 - Index 2, or
 - ...
- Keep optimal plan for each "interesting order"

Details

Step k = 2...n:

For each $Q = \{R_{i_1}, ..., R_{i_k}\}$

- For each j=1,...,k:
 - Consider all plans of the form $P = P_1 \bowtie P_2$
 - $-Cost(P) = Cost(\bowtie) + Cost(P_1) + Cost(P_2)$
 - Keep the cheapest plan, or
 - Keep multiple plans, for "interesting orders"

Runtime: exponential in n. Mitigated by: no cartesian products, restricted plan shapes

Importance of the Plan Space

 Do we need to explore a large space, or should we pick a plan at random?

 Do we need bushy trees, or are left-, or right-, or zigzag-trees enough?

 Do we need dynamic programming, or is greedy enough?

Figure 9: Cost distributions for 5 queries and different index configurations. The vertical green lines represent the cost of the optimal plan

Figure 9: Cost distributions for 5 queries and different index configurations. The vertical green lines represent the cost of the optimal plan

	PK	indexes	5	PK	K + FK indexes			
	median	95%	max	median	95%	max		
zig-zag	1.00	1.06	1.33	1.00	1.60	2.54		
left-deep	1.00	1.14	1.63	1.06	2.49	4.50		
right-deep	1.87	4.97	6.80	47.2	30931	738349		

 Table 2: Slowdown for restricted tree shapes in comparison to

 the optimal plan (true cardinalities)

[How good are t	hey]							
Generally, not much worse than optimal								
	PK	/ / PK ·	+ FK ind	exes				
	median	95%	max	median	95%	max		
zig-zag	1.00	1.06	1.33	1.00	1.60	2.54		
left-deep	1.00	1.14	1.63	1.06	2.49	4.50		
right-deep	1.87	4.97	6.80	47.2	30931	738349		

Table 2: Slowdown for restricted tree shapes in comparison tothe optimal plan (true cardinalities)

	PK indexes					PK + FK indexes						
	PostgreSQL estimates		true cardinalities			PostgreSQL estimates			true cardinalities			
	median	95%	max	median	95%	max	median	95%	max	median	95%	max
Dynamic Programming	1.03	1.85	4.79	1.00	1.00	1.00	1.66	169	186367	1.00	1.00	1.00
Quickpick-1000	1.05	2.19	7.29	1.00	1.07	1.14	2.52	365	186367	1.02	4.72	32.3
Greedy Operator Ordering	1.19	2.29	2.36	1.19	1.64	1.97	2.35	169	186367	1.20	5.77	21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the GreedyOperator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

Cascades Optimizer

• Extends join ordering to full rewrite

 Supported by some of the most advanced DBMS today: SQL Server, Cocroach Lab; (not sure about DuckDB)

• Mostly "insider knowledge"

Cascades Optimizer

• Main idea: apply optimization rules: $Q \rightarrow Q'$

But keep both Q and Q'

• "Memo" data structure: reuses subplans

R(A,B), S(B,C), T(C,D)

The Memo

Initialize Memo w/ one (naïve) plan

 $\sigma_{D=5}$

 \bowtie_{C}

S

 \bowtie_B

 $\sigma_{A=3}$

R

select * from R, S, T where R.B=S.B and S.C=T.C and R.A = 3and T.D = 5

R(A,B), S(B,C), T(C,D)

The Memo

Ínitialize Memo w/ one (naïve) plan

 $\sigma_{D=5}$

 \bowtie_{C}

S

 \bowtie_B

 $\sigma_{A=3}$

R

R(A,B), S(B,C), T(C,D)

2

select *

R(A,B), S(B,C), T(C,D)

select *

R(A,B), S(B,C), T(C,D)

The Memo

R(A,B), S(B,C), T(C,D)

select *

from R, S, T

R(A,B), S(B,C), T(C,D)

select *

R(A,B), S(B,C), T(C,D)

The Memo

R(A,B), S(B,C), T(C,D)

select *

R(A,B), S(B,C), T(C,D)

select *

R(A,B), S(B,C), T(C,D)

The Memo

R(A,B), S(B,C), T(C,D)

select *

R(A,B), S(B,C), T(C,D)

select *

Conclusions

 Query optimizers: some of the most complex systems in use today

> Query optimization is not rocket science. If you fail at query optimization, they send you to build rockets.

> > Anonymous