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1 IntroductionTypically, automated search over a corpus of itemsis based on a query identifying intrinsic features ofthe items sought. Search for textual documents (e.g.Web pages) uses queries containing words or describ-ing concepts that are desired in the returned docu-ments. Search for titles of compact discs, for example,requires identi�cation of desired artist, genre, or timeperiod. Most content retrieval methodologies use sometype of similarity score to match a query describing thecontent with the individual titles or items, and thenpresent the user with a ranked list of suggestions.A complementary method of identifying potentially in-teresting content uses data on the preferences of a setof users. Typically, these systems do not use any infor-mation regarding the actual content (e.g. words, au-thor, description) of the items, but are rather basedon usage or preference patterns of other users. Socalled collaborative �ltering or recommender systems[Resnick and Varian, 1997] are built on the assump-tion that a good way to �nd interesting content is to�nd other people who have similar interests, and thenrecommend titles that those similar users like.Though there is increasing commercial interest in col-laborative �ltering technology, there has been littlepublished research on the relative performance of var-ious algorithms used in collaborative �ltering systems.In this paper we describe various collaborative �lteringprediction methodologies, including previously pub-lished algorithms based on correlation coe�cients, aswell as algorithms based on learning Bayesian mod-els. We present empirical data regarding the relativepredictive performance of the various algorithms andextensions. Although we present some results address-ing the computational and scalability issues involved inapplying the various algorithms, our primary empha-sis is the accuracy and the quality of recommendationsof the predictive component.



2 Collaborative Filtering AlgorithmsThe task in collaborative �ltering is to predict the util-ity of items to a particular user (the active user) basedon a database of user votes from a sample or popula-tion of other users (the user database). In this paperwe will examine two general classes of collaborative�ltering algorithms. Memory-based algorithms oper-ate over the entire user database to make predictions.In Model-based collaborative �ltering, in contrast, usesthe user database to estimate or learn a model, whichis then used for predictions.Collaborative �ltering systems are often distinguishedby whether they operate over implicit versus explicitvotes. Explicit voting refers to a user consciously ex-pressing his or her preference for a title, usually on adiscrete numerical scale. For example, GroupLens sys-tem of Resnick et al. [1994] uses a scale of one (bad)to �ve (good) for users to rate Netnews articles, andusers explicitly rate each article after reading it. Im-plicit voting refers to interpreting user behavior or se-lections to impute a vote or preference. Implicit votescan based on browsing data (for example in Web ap-plications), purchase history (for example in online ortraditional stores), or other types of information accesspatterns.Regardless of the type of vote data available, collab-orative �ltering algorithms must address the issue ofmissing data| we typically do not have a completeset of votes across all titles. We cannot assume thatitems are missing at random. In most applications,users will vote on items they have accessed, and aremore likely to access (and vote) on items they like.Many of the applications of interest to us involve im-plicit voting, and some of the algorithms described inthe next section rely on an interpretation that any voteappearing in the database indicates a positive pref-erence. We also show that by making di�erent as-sumptions about the nature of missing data, the per-formance of collaborative �ltering algorithms can beimproved.2.1 Memory-Based AlgorithmsGenerally, the task in collaborative �ltering is to pre-dict the votes of a particular user (we will refer to thisuser as the active user) from a database of user votesfrom a sample or population of other users. The userdatabase therefore consists of a set of votes vi;j corre-sponding to the vote for user i on item j. If Ii is theset of items on which user i has voted, then we cande�ne the mean vote for user i as:

vi = 1jIijXj2Ii vi;jIn memory-based collaborative �ltering algorithms, wepredict the votes of the active user (indicated with asubscript a) based on some partial information regard-ing the active user and a set of weights calculated fromthe user database. We assume that the predicted voteof the active user for item j, pa;j , is a weighted sum ofthe votes of the other users:pa;j = va + � nXi=1 w(a; i)(vi;j � vi) (1)where n is the number of users in the collaborative�ltering database with nonzero weights. The weightsw(i; a) can re
ect distance, correlation, or similaritybetween each user i and the active user. � is a normal-izing factor such that the absolute values of the weightssum to unity. In the following, we distinguish betweenthe various collaborative �ltering algorithms in termsof the details of the \weight" calculation. There areother possible characterizations for memory-based col-laborative �ltering, however in this paper we restrictourselves to the formulation described above.2.1.1 CorrelationThis general formulation of statistical collaborative�ltering (as opposed to verbal or qualitative anno-tations) �rst appeared in the published literature inthe context of the GroupLens project, where the Pear-son correlation coe�cient was de�ned as the basis forthe weights [Resnick et al., 1994]. The correlation be-tween users a and i is:w(a; i) = Pj(va;j � va)(vi;j � vi)qPj(va;j � va)2Pj(vi;j � vi)2 (2)where the summations over j are over the items forwhich both users a and i have recorded votes.2.1.2 Vector SimilarityIn the �eld of information retrieval, the similarity be-tween two documents is often measured by treatingeach document as a vector of word frequencies andcomputing the cosine of the angle formed by the twofrequency vectors [Salton and McGill, 1983]. We canadopt this formalism to collaborative �ltering, whereusers take the role of documents, titles take the roleof words, and votes take the role of word frequencies.Note that under this algorithm, observed votes indi-cate a positive preference, there is no role for negative



votes, and unobserved items receive a zero vote. Therelevant weights are noww(a; i) =Xj va;jqPk2Ia v2a;k vi;jqPk2Ii v2i;k (3)where the squared terms in the denominator serve tonormalize votes so that users that vote on more ti-tles will not a priori be more similar to other users.Other normalization schemes, including absolute sumand number of votes, are possible.2.2 Extensions to Memory-Based AlgorithmsWe have investigated a number of modi�cations to thestandard algorithms that can improve performance.We describe these extensions here and the e�ective-ness of each is discussed in Section 4.2.2.1 Default VotingDefault voting is an extension to the correlation algo-rithm described in Section 2.1.1. It arose out of theobservation that when there are relatively few votes,for either the active user or the matching user, the cor-relation algorithm will not do well because it uses onlyvotes in the intersection of the items both individualshave voted on (Ia \ Ij). If we assume some defaultvalue as a vote for titles for which we do not haveexplicit votes, then we can form the match over theunion of voted items,(Ia [ Ij), where the default votevalue is inserted into the formula for the appropriateunobserved items.In addition, we can assume the same default vote valued for some number of additional items k that neitheruser has voted on. This has the e�ect of assumingthere are some additional number of unspeci�ed itemsthat neither user voted on, but they would nonethelessagree on.1 In most cases, the value for d will re
ecta neutral or somewhat negative preference for theseunobserved items.In applications with implicit voting, an observed voteis typically an indication of a positive preference (e.g. avisit to the Web page is assigned a vote value of 1). Inthis case the default vote can take on the value associ-ated with \did not visit" or 0. In this instance, defaultvoting takes on the role of extending the data for eachuser with the true value for missing data. Note, how-ever, we only calculate weights for users who matchthe active user on at least one item.1In our experiments, we have used a value of 10,000 ork.

2.2.2 Inverse User FrequencyIn applications of vector similarity in information re-trieval, word frequencies are typically modi�ed by theinverse document frequency [Salton and McGill, 1983].The idea is to reduce weights for commonly occurringwords, capturing the intuition that they are not as use-ful in identifying the topic of a document, while wordsthat occur less frequently are more indicative of topic.We can apply an analogous transformation to votesin a collaborative �ltering database, which we terminverse user frequency. The idea is that universallyliked items are not as useful in capturing similarity asless common items. We de�ne the fj as log nnj wherenj is the number of users who have voted for item jand n is the total number of users in the database.Note that if everyone has voted on a item j, then thefj is zero.To apply inverse user frequency while using the vec-tor similarity algorithm, we use a transformed vote inEquation 3. The transformed vote is simply the orig-inal vote multiplied by the fj factor. In the case ofcorrelation, we modify Equation 2 so that the fj istreated as a frequency and an item with a higher fjis assigned more weight in the correlation calculation.The relevant correlation weight with inverse frequencyis:w(a; i) =Pj fjPj fjva;jvi;j � (Pj fjva;j)(Pj fjvi;j))pUVwhere U =Xj fj(Xj fjv2a;j � (Xj fjva;j)2)V =Xj fj(Xj fjv2i;j � (Xj fjvi;j)2)2.2.3 Case Ampli�cationCase ampli�cation refers to a transform applied to theweights used in the basic collaborative �ltering pre-diction formula as in Equation 1. We transform theestimated weights as followsw0a;i = � w�a;i if wa;i � 0�(�w�a;i) if wa;i < 0The transform emphasizes weights that are closer toone, and punishes low weights. A typical value for �for our experiments is 2.5.



2.3 Model-Based MethodsFrom a probabilistic perspective, the collaborative �l-tering task can be viewed as calculating the expectedvalue of a vote, given what we know about the user.For the active user, we wish to predict votes on as-yet unobserved items. If we assume that the votes areinteger valued with a range for 0 to m we have:pa;j = E(va;j) = mXi=0 Pr (va;j = ijva;k; k 2 Ia) i (4)where the probability expression is the probability thatthe active user will have a particular vote value foritem j given the previously observed votes. In thispaper we examine two alternative probabilistic modelsfor collaborative �ltering, cluster models and Bayesiannetworks.2.3.1 Cluster ModelsOne plausible probabilistic model for collaborative �l-tering is a Bayesian classi�er where the probability ofvotes are conditionally independent given membershipin an unobserved class variable C taking on some rel-atively small number of discrete values. The idea isthat there are certain groups or types of users cap-turing a common set of preferences and tastes. Giventhe class, the preferences regarding the various items(expressed as votes) are independent. The probabilitymodel relating joint probability of class and votes to atractable set of conditional and marginal distributionsis the standard \naive" Bayes formulation:Pr (C = c; v1; : : : ; vn) = Pr(C = c) nYi=1Pr (vijC = c)The left-hand side of this expression is the probabilityof observing an individual of a particular class and acomplete set of vote values. It is straightforward to cal-culate the needed probability expressions for Equation4 within this framework. This model is also known asa multinomial mixture model.The parameters of the model, the probabilities of classmembership Pr(C = c), and the conditional prob-abilities of votes given class Pr (vijC = c) are esti-mated from a training set of user votes, the userdatabase. Since we never observe the class variables inthe database of users, we must employ methods thatcan learn parameters for models with hidden variables.We use the EM algorithm [Dempster et al., 1977] tolearn the parameters for a model structure with a �xednumber of classes. We choose the number of classes byselecting the model structure that yields the largest(approximate) marginal likelihood of the data. We
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Figure 1: A decision tree for whether an individualwatched \Melrose Place", with parents \Friend's", and\Beverly Hills, 90201". The bar charts at the bot-tom of the tree indicate the probabilities of watchedand not watched for \Melrose Place", conditioned onviewing the parent programs.use the method of Cheeseman and Stutz (1995) to ap-proximate the marginal likelihood (see also Chicker-ing and Heckerman, 1997). In our experiments, weassume each model structure (every possible numberof classes) is equally likely, and use a uniform priorfor model parameters. We initialize the EM algorithmusing the marginal-plus-noise technique described in[Thiesson et al., 1997].2.3.2 Bayesian Network ModelAn alternative model formulation for probabilistic col-laborative �ltering is a Bayesian network with a nodecorresponding to each item in the domain. The statesof each node correspond to the possible vote values foreach item. We also include a state corresponding to\no vote" for those domains where there is no naturalinterpretation for missing data.We then apply an algorithm for learning Bayesian net-works to the training data, where missing votes in thetraining data are indicated by the \no vote" value.The learning algorithm searches over various modelstructures in terms of dependencies for each item. Inthe resulting network, each item will have a set of par-ent items that are the best predictors of its votes. Eachconditional probability table is represented by a deci-sion tree encoding the conditional probabilities for thatnode. An example of such a tree, for television view-ing data (see Section 3.2) is shown in Figure 1. Detailsof the learning algorithm are discussed in Chickeringet al.(1997). In the remainder of the paper the termBayesian network will refer to these networks with adecision tree for each title.In the experiments that follow, we use a structureprior that penalizes each additional free parameterwith probability 0.1, and derive parameter priors froma prior network as described in Chickering et al., 1997.



In particular, we use a prior network that encodes auniform distribution over all possible outcomes and anequivalent sample size of 10. Experiments on subsetsof the training data showed these parameters to pro-duce accurate results, although there was little sensi-tivity.3 Empirical AnalysisThe purpose of this paper is to evaluate the predictiveaccuracy of the various algorithms for collaborative �l-tering. In this section we will describe the evaluationcriteria, the various protocols, and the datasets usedin the analysis. We then present and discuss the re-sults regarding predictive accuracy, as well as severalcomputational considerations.3.1 Evaluation CriteriaThe e�ectiveness of a collaborative �ltering algorithmdepends on manner in which recommendations will bepresented to the user. To evaluate these algorithms, wehave de�ned metrics based on the type of collaborative�ltering application and interface one is providing.There are two basic classes of collaborative �ltering ap-plications. In the �rst class, individual items are pre-sented one-at-a-time to the users along with a ratingindicating potential interest in the topic. The originalGroupLens system was in this category| each articlein a GNUs-like Netnews interface has an ASCII bar-chart indicating the system's prediction regarding theuser's possible interest in that article. Thus, each pieceof content has an associated estimated rating, and theuser interface displays this estimate along with a linkto the content or as a part of the display or presenta-tion of the item.A second class of collaborative �ltering applicationspresent the user with an ordered list of recommendeditems. Examples of systems that present recommen-dation lists include PHOAKS [L.Terveen et al., 1997]and SiteSeer [Rucker and Polanco, 1997]. In the spiritof the Internet search engines, these systems providea ranked list of items (Web sites, music recordings)where highest ranked items are predicted to be mostpreferred. In these types of systems, the user presum-ably will investigate items in the ordered list startingat the top hoping to �nd interesting items.We have applied two scoring metrics in ourevaluations{one appropriate for individual item-by-item recommendations and the other appropriate forranked lists. In both cases, the basic evaluation se-quence proceeds as follows. A dataset of users (andtheir votes) is divided into a training set and a testset. The data for the training set is used as the col-

laborative �ltering database or to build a probabilisticmodel. We then cycle through the users in the testset, treating each user as the active user. We dividethe votes for each test user into a set of votes that wetreat as observed, Ia, and a set that we will attemptto predict, Pa. We use the votes in Ia to predict thevotes in Pa as shown in Equations 1 and 4.For individual scoring, we look at the average absolutedeviation of the predicted vote to the actual vote onitems the users in the test set have actually voted on.That is, if the number of predicted votes in the testset for the active case is ma, then the average absolutedeviation for a user is:Sa = 1ma Xj2Pa jpa;j � va;j jThese scores are then averaged over all the users inthe test set of users. This metric was also used inevaluating the GroupLens project [Miller et al., 1997].For ranked scoring, the story is a bit more complex.In information retrieval research, ranked lists of re-turned items are evaluated in terms of recall and pre-cision. For a given number of returned items, recallis the percentage of relevant items that were returnedand precision is the percentage of returned items thatare relevant. In a collaborative �ltering framework, ifvotes were binary (like and dislike) and we had com-plete preference judgments for a set of users we coulddevelop a similar metric. However, more generally, wewish to estimate the expected utility of a particularranked list to a user. The expected utility of a list issimply the probability of viewing a recommended itemtimes its utility. In this analysis, we will equate theutility of an item with the di�erence between the voteand the default or neutral vote in the domain.Furthermore, we make an estimate of how likely it isthat the user will visit an item on a ranked list. Weposit that each successive item in a list is less likely tobe viewed by the user with an exponential decay. Thenthe expected utility of a ranked list of items (sorted byindex j in order of declining va;j) is:Ra =Xj max(va;j � d; 0)2(j�1)=(��1) (5)where d is the neutral vote and � is the viewing hal
ife.The hal
ife is the number of the item on the list suchthat there is a 50-50 chance the user will review thatitem. For these experiments, we used a hal
ife of 5items. 22We ran a set of experiments using a hal
ife of 10 itemsand found little sensitivity of results.



In scoring a ranked list generated for a user, we ap-ply Equation 5 using observed votes where available.For items that are not available, we apply the neutralvote, d, which e�ectively removes those items from thescoring. The �nal score for an experiment over a setof active users in the test set isR = 100 PaRaPaRmaxawhere Rmaxa is the maximum achievable utility if allobserved items had been at the top of the ranked list,ordered by vote value. This transformation allows usto consider results independent of the size of the testset and number of items predicted in a given experi-ment.3.2 DatasetsWe evaluated the algorithm for three separatedatasets, as follows:� MS Web: This dataset captures individual visitsto various areas (vroots) of the Microsoft corpo-rate web site. This is an example of an implicitvoting database and application. Each vroot wascharacterized as being visited (vote of one) or not(no vote).� Television: This dataset uses Neilsen networktelevision viewing data for individuals for a twoweek period in the summer of 1996. The data wastransformed into binary data indicating whethereach show was watched, or not, as above.3� EachMovie: This is an explicit voting example us-ing data from the EachMovie collaborative �lter-ing site deployed by Digital Equipment ResearchCenter from 1995 through 1997. 4 Votes rangedin value from 0 to 5.Table 3.2 provides additional information about eachdataset.3.3 ProtocolsWe did two classes of experiments re
ecting di�eringnumbers of votes available to the recommenders. Inthe �rst protocol, we withhold a single randomly se-lected vote for each user in the test set, and try topredict its value given all the other votes the user hasvoted on. We term this protocol All but 1. In the sec-ond set of experiments, we randomly select 2, 5, or 103This dataset was made available for this study courtesyof Nielsen Media Research.4For more information seehttp://www.research.digital.com/SRC/EachMovie/.

DatasetMSWEB Neilsen EachmovieTotal users 3453 1463 4119Total titles 294 203 1623Mean votesper user 3.95 9.55 46.4Median votesper user 3 8 26Table 1: Number of users, titles, and votes for thedatasets used in testing the algorithms. Only userswith 2 or more votes are considered.votes from each test user as the observed votes, andthen attempt to predict the remaining votes. We callthese protocols Given 2, Given 5, and Given 10.The All but 1 experiments measure the algorithms'performance when given as much data as possible fromeach test user. The various Given experiments look atusers with less data available, and examine the perfor-mance of the algorithms when there is relatively littleknown about an active user. In running the tests, ifa prospective test did not have adequate votes for atrial it was eliminated from the evaluation. Thus thenumber of trials evaluated under each protocol vary.4 ResultsIn the following sections, we compare algorithms andanalyze the e�ects of individual algorithmic exten-sions. We use randomized block design where eachalgorithm is run on the same test cases and observedvotes. We will refer to one of these comparisons as anexperiment. Our analyses uses ANOVA with the Bon-ferroni procedure for multiple comparisons statistics[McClave and Dietrich, 1988]. In the tables that fol-low, the value in the last row is labeled RD for RequiredDi�erence. The di�erence between any two scores ina column must be at least as big as the value in theRD row in order to be considered statistically signif-icant at the 90% con�dence level for the experimentas a whole. As a visual aid, a score in boldface issigni�cantly di�erent from the score directly below itin the table.4.1 Overall PerformanceThe following tables show the performance of the vari-ous major classes of algorithms on the various datasetsand experiments. We compared the best performingvariation of each algorithm on each dataset, for thedi�erent protocols. We also present the scores thatresult from presenting the user with the most popularitems, regardless of the known votes of the individ-



MS Web, Rank ScoringAlgorithm Given2 Given5 Given10 AllBut1BN 59.95 59.84 53.92 66.69CR+ 60.64 57.89 51.47 63.59VSIM 59.22 56.13 49.33 61.70BC 57.03 54.83 47.83 59.42POP 49.14 46.91 41.14 49.77RD 0.91 1.82 4.49 0.93Table 2: Ranked scoring results for the MS Webdataset. Higher scores indicate better performance.ual. This results in a baseline performance of a \zero-order" collaborative �ltering system, and is labeled asPOP in the tables. The algorithm labeled CR+ refersto use of the correlation technique with inverse userfrequency, default voting, and case ampli�cation ex-tensions. VSIM refers to using the vector similaritymethod with the inverse user frequency transforma-tion. BN and BC refer to the Bayesian network andclustering models respectively.Our results show that Bayesian networks with deci-sion trees at each node and correlation methods arethe best performing algorithms over the experimentswe have run. We ran 16 combinations of dataset, pro-tocol, and scoring criteria. The Bayesian network andcorrelation-based were each either best, or statisticallyequivalent, in 10 cases. Bayesian clustering was bestperforming in 2 cases and vector similarity was best in3 cases.We see that the Bayesian network performs best un-der the All but 1 protocol. Generally, all the methodsperform less well in the Given 2 and Given 5 protocolsas might be expected. However the vector similarityand clustering methods are competitive for some ofthese limited-data scenarios, since these methods canuse partial information e�ectively.Table 2 shows data for rank scoring for the Microsoftweb site dataset. For ranked scoring, higher scoresindicate better performance. We see the Bayesian net-work model results in the best, or statistically equiv-alent to the best, score for all protocols. Correlation,with the appropriate enhancements designed to im-prove ranked scoring, is fairly close in performance.Note that correlation without default voting cannotoperate on binary data with implicit voting, since allobserved votes will have the same value. The vectorsimilarity algorithm is slightly worse than correlation.All these algorithms outperform using popularity as arecommender.For the Neilsen dataset (Table 3), the Bayesian net-work outperforms the other algorithms except for the

Neilsen, Rank ScoringAlgorithm Given2 Given5 Given10 AllBut1BN 34.90 42.24 47.39 44.92CR+ 39.44 43.23 43.47 39.49VSIM 39.20 40.89 39.12 36.23BC 19.55 18.85 22.51 16.48POP 20.17 19.53 19.04 13.91RD 1.53 1.78 2.42 2.40Table 3: Ranked scoring results for the Neilsendataset. Higher scores indicate better performance.EachMovie, Rank ScoringAlgorithm Given2 Given5 Given10 AllBut1CR+ 41.60 42.33 41.46 23.16VSIM 42.45 42.12 40.15 22.07BC 38.06 36.68 34.98 21.38BN 28.64 30.50 33.16 23.49POP 30.80 28.90 28.01 13.94RD 0.75 0.75 0.78 0.78Table 4: Ranked scoring results for the EachMoviedataset. Higher scores indicate better performance.Given 2 protocol. Correlation, with extensions, andvector similarity are fairly close in performance, whileBayesian clustering performs relatively poorly. We seethat the Bayesian network drops o� in performancequite signi�cantly for the Given 2 protocol, relative tocorrelation and vector similarity. We will discuss thisobservation below.We see a somewhat di�erent pattern for EachMovieunder ranked scoring, shown in Table 4. Here the cor-relation algorithm is the top performer overall, withvector similarity performing well with less data. Forthis dataset and score, the Bayesian network performsworse than any of the other algorithms on all the Givenexperiments, but is the top performer and is competi-tive with correlation for the All but 1 protocol.The Bayesian networks using decision trees su�er inthe Given scenarios because they are provided withrelatively little data. If a title that is held out fortesting appears near the top of a tree, then it's valueis set to \no vote" in evaluating the probability of apossibly related title. This may result in a title that isprovided being ignored or having little impact, simplydue to the ordering of the various predicting titles inthe tree. The various All But 1 experiments are ableto utilize trees to a fuller extent, and therefore performwell relative to the other methods that can use partialdata.



EachMovie, Absolute DeviationAlgorithm Given2 Given5 Given10 AllBut1CR 1.257 1.139 1.069 0.994BC 1.127 1.144 1.138 1.103BN 1.143 1.154 1.139 1.066VSIM 2.113 2.177 2.235 2.136RD 0.022 0.023 0.025 0.043Table 5: Absolute Deviation scoring results for theEachMovie dataset. Lower scores are better.For absolute deviation, we examined the EachMoviedataset and results are shown in Table 5. This datasethas a vote range of 0 to 5, making vote predictiona relevant task. We examine the same algorithms asin the previous table, except now we use a correla-tion algorithm without applying any of the extensionsexcept for inverse user frequency. The other exten-sions are not e�ective for absolute deviation scoring.This basic correlation algorithm performs best in allbut the Given 2 experiments, indicating that this al-gorithm performs well when given adequate data re-garding the active case. The Bayesian clustered modeldoes slightly better than the Bayesian network, andoutperforms correlation in the Given 2 and Given 5cases.4.2 Inverse User FrequencyIn Section 2.2.2 we describe using inverse user fre-quency to modify vote values in applying memory-based algorithms. We performed a set of 12 experi-ments (3 datasets, 4 protocols) each for vector sim-ilarity and correlation judging the e�ect of applyinginverse user frequency under ranked scoring. In allexperiments, application of IUF improved the rankedscore, and in 23 of 24 cases results were statisticallysigni�cant. The average improvement was 1.9%, withan improvement of 2.2% for the vector similarity algo-rithm, and 1.5% for the correlation algorithm.In 8 experiments run on the EachMovie dataset usingabsolute deviation scoring, the improvement averageda more impressive 11%. Results were signi�cant in 6of the 8 experiments. The average improvement was of15.5% for vector similarity, and 6.5% for correlation.4.3 Case Ampli�cationCase ampli�cation (Section 2.2.3) modi�es weightsused in an memory-based algorithm to emphasizehigher weights. We performed a set of 12 experiments(3 datasets, 4 protocols) applying case ampli�cation tocorrelation. The average improvement in the rankedscore was 4.8%, and results were signi�cant in 11 of 12

experiments. There is no signi�cant e�ect of case am-pli�cation on absolute deviation scoring. We also ranexperiments combining case ampli�cation and inverseuser frequency, and found the bene�ts to be additive.4.4 Probabilistic MethodsWe used a training set to build probabilistic modelsfor each dataset. Each title was encoded with an addi-tional explicit vote value of \no vote" to complete thedataset for probabilistic learning. When scoring withBayesian networks and cluster models, the \no vote"values were explicitly entered into the network whenmissing, for both ranked and absolute deviation scor-ing. For the trees, the \no vote" values were enteredin each tree independently in order to generate a prob-ability for that title. For absolute deviation scoring,the expected vote was calculated by renormalizing theoutput probabilities, clamping the \no vote" probabil-ity to zero.There are roughly 1600 movies in the EachMoviedataset, too many to estimate a full model in a reason-able amount of time. Therefore the Bayesian methodswere trained from EachMovie for the top 300 moviesin terms of overall popularity. For testing, all 1600movies were used. In the other datasets, all items wereused for training and testing.For the Bayesian networks, we applied alternate priorspeci�cations which resulted in trees of varying com-plexity. Priors that strongly penalized splits generatedBayesian networks with nodes with approximately 2 to4 parents and 4 to 6 distributions in the decision treerepresentation. The model with the larger trees hadsomewhere between 4 and 6 predecessors and 6 to 8distributions per variable. In all our experiments thelarger trees outperformed the smaller tree so we re-strict our results to those models. Additional detailsare available in Breese et al. (1998).Applying clustering to the datasets identi�ed 3 classesfor the Neilsen dataset, 7 classes for the MS Webdataset, and 9 classes for the EachMovie dataset. Theclasses found by clustering for the MS Web dataset areshown below. Each entry is a page area or virtual rootthat distinguishes this class from the others. The classnames on the left were manually generated based oninspecting the resulting classes.Support Support Desktop, Knowledge Base, Win-dows95 Support, Search, NT Server SupportWindows Products, Free Downloads, Windows95,Windows95 Support, Windows Family of Prod-uctsO�ce Products, MS O�ce Info, Free Downloads, MS



Word News, O�ce Free Stu�, MS O�ceDevelopers Search, Training, Games, DeveloperNetwork, Job OpeningsInternet Explorer Internet Explorer, Free Down-loads, IE support, Net Meeting, International IEContentInternet Explorer Technical Search, Free Down-loads, Products, Internet Explorer, Internet SiteConstruction for Dev.IE Site Builder Internet Site Construction for Dev.,Web Site Builders Gallery, Developer Workshop,Sitebuilder Network Membership, Jakarta, Ac-tiveX Technology Dev.Among probabilistic methods, the Bayesian networkwith a decision tree at each item outperformed thecluster models for ranked scoring. In 12 comparisons,there was an average 41% improvement in rankedscores, all di�erences being statistically signi�cant.For absolute deviation experiments run with the Each-Movie data, we found that the cluster model performedslightly better than the trees.5 Additional IssuesAlthough predictive accuracy is probably the most im-portant aspect in gauging the e�cacy of a collabora-tive �ltering algorithm, there are other considerations,including size of model, sampling, and runtime perfor-mance.If one considers the size of the overall collaborative �l-tering prediction representation, memory-based meth-ods require a relatively small algorithm code base, plusa user database consisting of a sample of user votes.The model-based methods require the representationof the Bayesian network model, typically having muchsmaller memory requirements. For example, the userdatabases required for the memory-based methods forthe EachMovie and MS Web datasets were approxi-mately 314 and 318 Kilobytes compressed, while theBayesian network model sizes were 27 and 55 Kilobytescompressed respectively.The number of items in the usage database used forthe memory-based methods was determined by exper-imenting with the scoring for various sizes of trainingset. Figure 2 shows the increase in ranked scoring ac-curacy as a function of size of training set. We usedtraining set sizes (number of users) of 1637 for Neilsen,5000 for EachMovie, and 32711 for MS Web. Identi-cal training sets were used as the user database formodel-based methods, and as the database for learn-ing probabilistic models. Our experiments have found
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Figure 2: A learning curve showing the e�ect of samplesize on ranked scoring for the correlation method, Allbut 1 protocol, MSWeb dataset.that sample sizes on this order are adequate for pur-poses of generating recommendations.In terms of runtime performance, the probabilistic,model-based methods were approximately 4 times asfast as the memory-based methods in generating rec-ommendations, with correlation generating 3.2 recom-mendations per second and the Bayes net generating12.9 recommendations per second on 266 MHz Pen-tium II processor (Eachmovie dataset). Of course, theprobabilistic models must be learned. Learning timesfor the models used in these experiments ranged fromless than an hour for Neilsen and up to 8 hours forEachMovie and MS Web.6 ConclusionsThis paper presents an extensive set of experiments re-garding the predictive performance of statistical algo-rithms for collaborative �ltering or recommender sys-tems. Results indicate that for a wide range of con-ditions, Bayesian networks with decision trees at eachnode and correlation methods outperform Bayesian-clustering and vector similarity methods. Between cor-relation and Bayesian networks, the preferred methoddepends on the nature of the dataset, nature of the ap-plication (ranked or one-by-one presentation), and theavailability of votes with which to make predictions.We see that when there are relatively few votes, corre-lation and Bayesian networks have less of an advantageover the other techniques.Other considerations include the size of database,speed of predictions, and learning time. Bayesian net-works are typically have smaller memory requirementsand allow for faster predictions than a memory-based



technique such as correlation. However, the Bayesianmethods examined here require a learning phase thatcan take up to several hours and results in a lag beforechanged behavior is re
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