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1. Introduction 

Concept learning, which Hunt, Marin, and Stone (1966) describe succinctly as "[the] capac- 
ity to develop classification rules from experience" has long been a principal area of machine 
learning research. Supervised concept learning systems are supplied with information about 
several entities whose class membership is known and produce from this a characterization 
of each class. 

One major dimension along which to differentiate concept learning systems is the com- 
plexity of the input and output languages that they employ. At one extreme are learning 
systems that use apropositional attribute-value language for describing entities and classifica- 
tion rules. The simplicity of this formalism allows such systems to deal with large volumes 
of data and thus to exploit statistical properties of collections of examples and counter- 
examples of a concept. At the other end of the spectrum, logical inference systems accept 
descriptions of complex, structured entities and generate classification rules expressed in 
first-order logic. These typically have access to background knowledge pertinent to the 
domain and so require fewer entity descriptions. FOIL, the system described in this paper, 
builds on ideas from both groups. Objects are described using relations and from these 
FOIL generates classification rules expressed in a restricted form of first-order logic, using 
methods adapted from those that have evolved in attribute-value learning systems. 

The following section reviews briefly two fundamental methods for learning concepts 
from attribute-value descriptions of objects. After illustrating inadequacies of this proposi- 
tional description language, the paper introduces the more powerful first-order formalism 
used by FOIL. The algorithm itself is described in Section 4. The next section presents 
results obtained by FOIL on six diverse tasks taken from the machine learning literature. 
Section 6 analyzes limitations of the current algorithm along with plans for overcoming 
some of them. The final section discusses FOIL in relation to other methods of learning 
logical descriptions. 
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2. Propositional methods for inductive learning 

There has been considerable research on the learning formalism in which objects, described 
in terms of a fixed collection of attributes, belong to one of a small number of mutually 
exclusive and exhaustive classes. The learning task may be stated as: given a training set 
of objects whose classes are known, find a rule for predicting the class of an unseen object 
as a function of its attribute values. This section reviews two approaches to this task and 
then turns to shortcomings of this representation. 

2.L The divide-and-conquer method 

Several systems based on this attribute-value representation express what is learned as a 
decision tree, examples being Hunt et al.'s (1966) CLS, Quinlan's (1979, 1986) ID3, Breiman, 
Friedman, Olshen and Stone's (1984) CART, and Cestnik, Kononenko and Bratko's (1987) 
ASSISTANT. At a somewhat oversimplified level, these systems use the same method to con- 
struct a decision tree from a training set of objects, summarized as follows: 

• If  all training objects belong to a single class, the tree is a leaf labelled with that class. 
• Otherwise, 

- select a test based on one attribute, 
- divide the training set into subsets, each corresponding to one of the possible (mutually 

exclusive) outcomes of the test, and 
- apply the same procedure to each subset 

The extent to which this method yields compact trees with high predictive accuracy on 
unseen objects depends on the choice of a test to divide the training set. A good choice 
should assist the development of pure subsets which do not require further division. It 
has proved possible to design simple information-based or encoding-length heuristics that 
provide effective guidance for division, to the extent that this greedy algorithm, which never 
reconsiders the choice of a test, is adequate for most tasks. Examples of such heuristics 
appear in Quinlan (1988) and Quinlan and Rivest (1989). 

2.2. The covering method 

Other induction algorithms, notably the AQ family (Michalski, 1989; Michalski, Mozeti~, 
Hong, and Lavrar, 1986), represent classification knowledge as a disjunctive logical expres- 
sion defining each class. The core of this "covering" method can be summarized as: 

• Find a conjunction of conditions that is satisfied by some objects in the target class, but 
no objects from another class; 

• Append this conjunction as one disjunct of the logical expression being developed; 
• Remove all objects that satisfy this conjunction and, if there are still some remaining 

objects of the target class, repeat the procedure. 
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Members of the AQ family find a suitable conjunction starting from a single seed object 
of the target class. Specifically, they carry out a beam search on the space of subsets of the 
primitive descriptors of the seed objects, looking for simple conjunctions that delineate many 
objects in the target class. A later algorithm, CN2 (Clark and Niblett, 1987, 1989), shares 
this core but uses a divide-and-separate method similar to that employed by the decision 
tree systems to construct a suitable conjunction. Rivest (1988) shows that disjunctive covers 
in which the complexity of individual conjunctions is bounded are polynomially learnable. 

3. Moving to a more powerful representation 

The learning methods above have proved their worth in a great variety of applications. 
Their principal weakness derives from a lack of expressive power in the languages used 
to describe objects and classification rules. An object must be specified by its values for 
a fixed set of attributes, and rules must be expressed as functions of these same attributes. 

To see why this presents a problem, consider a domain involving directional networks 
like the one in Figure 1, and suppose that we attempted to set down a collection of attributes 
sufficient to describe any network. Now, this description can be viewed as an encoding 
task. A fixed number of attribute values conveys a fixed number of bits of information 
and it is easy to construct a network that would require more bits to represent its nodes 
and links. Further, suppose the description task were simplified by restricting networks 
to a maximum of ten nodes, say, with each node connected to at most three others. Any 
such network could then be represented in terms of the thirty attributes 

attributes A,, B,, C,: the nodes to which node 1 is linked 
attributes A2, B2, C2: the nodes to which node 2 is linked 

and so on, perhaps using a value of zero to denote "not applicable?' Even then, learned 
concepts would have to be expressed as logical functions of these attribute values. Consider 
the concept, "two nodes are linked to each other?' The expression of this concept in the 
above representation is the truly horrific 

Figure 1. A small network illustrating the limitations of propositional descriptions. 
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(AI = 2 V B I  = 2 V C1 = 2) &(A2 = 1 VB2 = 1 v C2 = l) 
v (A1 = 3 v B1 -~ 3 V C 1 = 3) & (A3 = 1 V B3 = 1 V C3 = 1) 
v (A~ = 4 V B I  = 4 V C1 = 4 ) &  (A4 = 1 V B  4 = 1 v C4 = 1) 

v (A2 = 3 VB2 = 3 V Cz = 3) & (A3 = 2 v B a  = 2 v C3 = 2) 
V (A z = 4 V B 2 = 4 V Cz = 4 )  & (A 4 = 2 v B 4 = 2 V C4 = 2) 

and so on. It is clear that such a propositional description language flounders when faced 
with complex objects and concepts. 

Structural information such as the network can be represented naturally as a collection 
of relations. A relation is associated with a k-ary predicate and consists of the set of k-tuples 
of constants that satisfy that predicate. In the above network, for example, the predicate 
linked-to(X, Y), denoting that node X is directly linked to node Y, can he represented by 
the relation 

linked-to = {(0,1), (0,3), (1,2), (3,2), (3,4), 
(4,5), (4,6), (6,8), (7,6), (7,8)} 

Now we need a language to express what is learned from such relations• One candidate 
is function-free Horn clause logic, a subset of pure Prolog, in which the clause 

C ~-- L1, L2 . . . .  , Ln 

is interpreted as "if  L1 and L 2 and . . .  and L n then C." In this paper we adopt an extension 
in which a clause may contain negated literals on its right-hand side; thus C is a predicate 
and each Li is either a predicate or the negation of  a predicate. We follow the usual Prolog 
convention of  starting variables with a capital letter, all other atoms being constants. To 
continue the illustration, the concept "two nodes are linked to each other" might now be 
expressed as 

linked-to-each-other(X, Y) ~- linked-to(X, Y), linked-to(Y, X). 

The propositional attribute-value formalism is simple but limited• Having specified a 
more powerful language to describe objects and concepts, the next step is to develop learn- 
ing methods capable of exploiting it. 

4. FOIL, a system that  constructs definitions 

This section introduces a learning algorithm called FOIL whose ancestry can be traced to 
both AO and ID3. The task addressed by this system is to find, for one target relation at 
a time, clauses as above that define the relation in terms of itself and the other relations? 
FO1L thUS moves from an explicit representation of  the target relation (as a set of tuples 
of a particular collection of constants), to a more general, functional definition that might 
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be applied to different constants. For example, an explicit representation of the relation 
can-reach in the network of Figure 1 is 

can-reach = {10,1), (0,2), (0,3), (0,4), (0,5}, (0,6}, (0,8}, 
(1,2), (3,2), (3,4), (3,5), (3,6), (3,8), (4,5), 
(4,6), (4,8), (6,8), (7,6), (7,8)} 

This extensional definition of can-reach is applicable only to the given network but, from 
this relation and the relation linked-to given previously, tOIL constructs the general definition 

can-reach(X1, Xa) ~ linked-to(X1, Xz) 
can-reach(X1, Xz) ":-- linked-to(Xl, X3), can-reach(X3, Xa) 

which is valid for any network. 
For a particular target relation, FOIL finds clauses one at a time, removing tuples explained 

by the current clause before looking for the next in the manner  of  AQ and c~2. Like ID3, 
FOIL uses an information-based heuristic to guide its search for simple, general clauses. 

4.L Description of the approach 

Consider a target relation based on a k-ary predicate P ( X 1 ,  X 2 . . . .  , X~). In place of a 
training set of  objects we have a set of k-tuples of constants, each tuple representing a value 
assignment to the variables X1, X2 . . . .  , Xk. By analogy with an object's class, each of 
these tuples is labelled with a (~ or @ to indicate whether or not it is in the target relation. 
The (~ tuples are just those given for the target relation P. Possible sources of @ tuples are: 

• As part  of the problem, we might be given an explicit list of tuples not in the relation. 
For instance, we might be told that (0,2) is not in the relation linked-to. 

• The more usual case would correspond to the closed-world assumption of Prolog (and 
databases): if  a tuple is not explicitly given as a component of  the relation, then it is 
not in the relation. In this case the @-tuples consist of all constant k-tuples other than 
those marked ~).  

• Some domains may have associated types that constrain the tuples in a relation. For exam- 
ple, a tuple in the relation lives-in(X, Y) might only make sense if the first constant iden- 
tified a person and the second a city. In such cases 'all constant k-tuples' above could 
be amended to 'all constant k-tuples obeying the type constraints of the target relation" 

At the outermost level, the operation of FOIL can be summarized as: 

• Establish the training set consisting of constant tuples, some labelled @ and some @. 
• Until there are no @ tuples left in the training set: 

- Find a clause that characterizes part of the the target relation. 
- Remove all tuples that satisfy the right-hand side of this clause from the training set. 
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In the inner loop, FOIL seeks a Prolog clause of  the form 

P(X~,  X2 . . . . .  Xk)  ' -  L1, Z2, . . . ,  t n 

that characterizes some subset of  the relation P. The clause is 'grown' by starting with just 
the left-hand side and adding literals one by one to the right-hand side. At any stage in 
its development, the partial clause will contain m distinct bound  variables that appear in 
the left-hand side and unnegated literals of  the right-hand side. This inner loop makes use 
of  a local training set consisting of labelled m-tuples of  constants; each tuple in this set 
represents a value assignment to all bound variables in the clause. The inner loop can be 
sketched as follows: 

• Initialize the local training set T~ to the training set and let i = 1. 
• While T,- contains @ tuples: 

- Find a literal L i to add to the right-hand side of the clause. 
- Produce a new training set T/+ 1 based on those tuples in Ti that satisfy L i. I f  L i intro- 

duces new variables, each such tuple from T/ may give rise to several (expanded) 
tuples in Ti+ 1. The label of  each tuple in T/+ 1 is the same as that of the parent tuple 
in T i. 

- Increment i and continue. 

Consider the task of finding the first literal L 1 in a clause. At this stage we have a train- 
ing set T1 containing k-tuples, T + of  them labelled (~) and T~- labelled @. It may help 
to bear in mind that each k-tuple corresponds to a possible binding of the variables {X1, X2, 
. . . ,  Xk} in the left-hand side of the clause. 

A good choice for L~ would be a literal that is satisfied by many of the @ tuples in 
T1 but few of the @ ones, so that testing L~ would tend to concentrate the (~ tuples. Let 
Q be some r-ary predicate and consider choosing as L~ the literal 

Q(V~, VE . . . .  Vr), where V/ ~ {X1, X2, . . . ,  Xk} (3 {Y~, Yz . . . . .  Ys} 

(the Y/'s being new variables introduced by this literal). A constant k-tuple (cl, c2 . . . .  , ck) 
in the set T~ satisfies L1 if, and only if, after binding X1 to cl, X2 to c2, . . . ,  X~ to ck, 
there exists one or more bindings of the new variables {Y1, I72 . . . . .  Y~} such that (V1, V2, 
. . . .  Vr) is in the relation Q. Let T ++ denote the number of such tuples that satisfy L1. 

I f  this literal were chosen for L1, we would have a new training set T2 consisting of (k + s)- 
tuples, T + of them being labelled ~ and T2 of them @. The desirability of  this outcome 
can be estimated by a simple information-based heuristic function of T ++, T + , and T2 
as described below in Section 4.3. I f  T2 contains only (~ tuples, this clause is complete, 
since it defines a subset of the relation P; otherwise, we continue searching for L2 using 
the local training set T2. Note that this is a covering algorithm similar to AQ rather than 
a divide-and-conquer algorithm like ID3; the addition of each literal to the right-hand side 
of  the clause modifies the existing training set rather than splitting it into separate subsets. 
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4.2. An example 

To illustrate the above, we will trace FOIL'S operation on the target relation can-reach from 
the network in Figure 1. There are nine constants so, under the closed-world assumption, 
the training set T~ for the first clause 

can-reach(X1, X2) ' -  - . .  

consists of the 81 labelled pairs 

(3: 

(0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,8) (1,2) (3,2) (3,4) 
(3,5) (3,6) (3,8) (4,5) (4,6) (4,8) (6,8) (7,6) (7,8) 
(0,0) (0,7) (1,0) (1,1) (1,3) (1,4) (1,5) (1,6) (1,7)(1,8) 
(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (3,0) 
(3,1) (3,3) (3,7) (4,0) (4,1) (4,2) (4,3) (4,4) (4,7) (5,0) 
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8) (6,0) (6,1) 
(6,2) (6,3) (6,4) (6,5) (6,6) (6,7) {7,0) (7,1) {7,2) (7,3) 
(7,4) (7,5) (7,7) (8,0) (8,1) (8,2) {8,3) (8,4) (8,5) (8,6) 
(8,7) (8,8) 

If the first literal selected for the right-hand side were linked-to(Xl, X2), ten of these mples 
would be satisfied (namely those in the relation linked-to). Since all of them are (~ tuples, 
this would complete the first clause 

can-reach(X1, X2) ~ linked-to(X1, X2). 

On the second time through, we enter the inner loop with T~ consisting of the remaining 
O tuples 

(~: (0,2) (0,4) (0,5) (0,6) (0,8) (3,5) (3,6) (3,8) (4,8) 

and the same (~ tuples as before. If we now selected the literal linked-to(Xl, X3), the O 
pairs (2 , . . . ) ,  (5 . . . .  ) and (8, . . . )  would be eliminated. Since this literal introduces a new 
variable 3;3, each remaining pair (X,Y) would give triples {(X,Y, Zi)}, one for each pair 
(X, Zi) in the relation linked-to. The set T2 would thus consist of the triples 

(9: 

Q:  

{0,2,1) (0,2,3)(0,4,1) (0,4,3) (0,5,1) (0,5,3) 0,6,1) 
{0,6,3) (0,8,1) (0,8,3) (3,5,2) {3,5,4) (3,6,2) (3,6,4) 
(3,8,2) (3,8,4) (4,8,5) (4,8,6) 
(0,0,1) (0,0,3) (0,7,1) (0,7,3) (1,0,2) (1,1,2) (1,3,2) 
(1,4,2) (1,5,2) (1,6,2) 0,7,2) (1,8,2)(3,0,2) (3,0,4) 
(3,1,2) (3,1,4) (3,3,2)(3,3,4) (3,7,2)(3,7,4) (4,0,5) 
(4,0,6) (4,1,5) (4,1,6) (4,2,5) (4,2,6) (4,3,5) (4,3,6) 
(4,4,5) (4,4,6) (4,7,5) (4,7,6) (6,0,8) (6,1,8) (6,2,8) 
(6,3,8) (6,4,8) (6,5,8) (6,6,8) (6,7,8) (7,0,6) {7,0,8) 
(7,1,6) (7,1,8) (7,2,6) (7,2,8) (7,3,6) (7,3,8) (7,4,6) 
(7,4,8) (7,5,6) (7,5,8)(7,7,6) (7,7,8) 
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Since there are still Q tuples, this clause is not complete; selecting a second literal can- 
reach(X3, X2) determines T3 as 

Q:  (0,2,1) (0,2,3) (0,4,3)(0,5,3) (0,6,3)(0,8,3) (3,5,4) 
(3,6,4) (3,8,4) (4,8,6) 

and, since T3 contains only @ tuples, the second clause is finalized as the recursive 

can-reach(X1, Xz) ~- linked-to(X1, X3), can-reach(X3, X2). 

All @ tuples in the original relation are covered by one or other of these clauses so the 
definition of can-reach is now complete. 

Instead of the second literal above, we could have chosen the literal linked-to(X3, X2) 
which would also give a T3 with only (~ tuples 

(~: (0,2,1) (0,2,3) (0,4,3)(3,5,4)(3,6,4) (4,8,6) 

leading to the clause 

can-reach(X1, X2) ~- linked-to(X1, X3), linked-to(X3, X2). 

The reason that FOIL judges the former to be more useful than the latter forms the topic 
of the next section. 

4.3. The heuristic for  evaluating literals 

The description of the learning algorithm refers to a heuristic for assessing the usefulness 
of a literal as the next component of the right-hand side of a clause. Like ID3, VOIL uses an 
information-based estimate which seems to provide effective guidance for clause construction. 

The whole purpose of a clause is to characterize a subset of the @ tuples in a relation. 
It therefore seems appropriate to focus on the information provided by signalling that a 
tuple is one of the @ kind. If the current T/contains T/+ @ tuples and T/-@ tuples as 
before, the information required for this signal from T/is given by 

I(Ti) = -log2(T~ / (T + + T~)). 

If the selection of a particular literal Li would give rise to a new set Z/+l, the information 
given by the same signal is similarly 

I(Ti+a) = - logz(T+l  / (T~+I + T~+I)). 

As above, suppose that Ti ++ of the @ tuples in T/are represented by one or more tuples 
in T/+I. The total information we have gained regarding the @ tuples in Ti is given by 
the number of them that satisfy Li multiplied by the information gained regarding each 
of them, i.e., 
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Gain(Li) = T ++ × (I(Ti) - I(Ti+l)). 

Note that this gain is negative if Q tuples are less concentrated in Ti+l than in T/, and 
is small if either the concentrations are similar or few G tuples in T/satisfy L i. 

In the second clause of  the previous network example, T2 contains 18 O tuples and 54 
Q tuples, so l(T2) is 2.0. For the literal can-reach(X3, X2), ten tuples are represented in T3, 
I(T3) is zero, so the gain for this literal is 20.0. The alternative literal linked-to(X3, X2), 
on the other hand, gives six tuples in T3, I(T3) again being zero, for a gain of 12.0. The 
heuristic therefore selects the former literal over the latter. 

Gain(Li) is the primary measure of  the utility of  a literal Li, but it has been found desir- 
able to assign a very small credit to an unnegated literal that introduces new free variables, 
even if it does not give a higher concentration of Q tuples. The reasoning behind this 
is that, if no literal produces any apparent gain, it may be helpful to introduce a new variable 
and try again with the enlarged collection of possible literals. 

4.4. Searching the space o f  literals 

This seems a natural point to discuss the search for literals. Recall that the inner loop of 
FOIL builds a single clause 

P(Xl ,  x~, . . . ,  xk)  ,-- L~, L~, . . . ,  I~, 

choosing at each iteration the most promising literal L i to attach to the right-hand side. 
We turn now to the space of possibilities explored in the process of  finding this best literal. 

Each literal L i in the right-hand side of a clause takes one of the four forms Xj = Xk, 
Xj ;~ X k, Q(V1, 1/2 . . . .  , Vr), or ~ Q(V~, v2 . . . .  , Vr), where the Xi's are existing variables, 
the Vi's are existing or new variables, and Q is some relation. FOIL investigates the entire 
space of such literals, with three significant qualifications: 

• The literal must contain at least one existing variable. 
• I f  Q is the same as the relation P on the left-hand side of the clause, possible arguments 

are restricted to prevent some problematic recursion. 
• The form of the Gain heuristic allows a kind of pruning akin to alpha-beta (Winston, 1984). 

The first and third of  these are designed to prevent unnecessary search while the second 
is intended to prevent the construction of useless definitions that cause infinite recursion. 
The remainder of  this section looks at each of these qualifications in turn. 

Existing variable: FOIL requires at least one of the Vi's to be a variable introduced by the 
left-hand side or by a previous literal in this clause. The rationale for this restriction is 
that a new literal should have some linkage to previous literals in the clause. 

There is a more abstract justification that depends on the order of literals in the right- 
hand side of a Prolog clause. Since the clause is satisfied only when all literals are satisfied, 
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the meaning of a clause apparently does not depend on this order, which might however 
affect computational efficiency. Thus the clauses 

Q(X) ~ R(X, Y), S(Y) 
Q(X) , -  S(r), n(X, r) 

have the same meaning, but one may be faster to compute. Negated literats with variables 
that do not appear in the left-hand side of the clause are an exception to this general order- 
independence. The clause 

Q(X) ~ R(X, Y), ~S(Y)  

is satisfied whenever R contains a tuple (X,a), say, and (a) does not appear in the relation 
S. On the other hand, the clause 

Q(X) ~ -~S(Y), R(X, Y) 

is never satisfied if S contains any tuples at all. In this example, the right-hand side of 
the first clause is interpreted as 

3Y (R(X, Y) A -~S(Y)) 

and that of the second as the very different 

-7 (3 Y S(Y)) A ~ Y R(X, II). 

For a more complete discussion of the meaning of  negated literals in Prolog, see Bratko 
(1986). 

The final clause will not contain any negated literal, all of  whose variable are unique 
to that literal, since such a literal would always be falsified. On the other hand, the order 
of  unnegated literals does not affect the meaning of the clause, as above, so we can afford 
to wait until at least one of the variables in the literal has been bound. 

Recursive definitions: If  the relation Q of the selected literal is the same as the target 
relation P, some combinations of arguments of  Q could lead to infinite recursion. An early 
version of  the system attempted to ameliorate this problem by preventing a single clause 
calling itself with the same arguments; i.e., by ensuring that there were no values of the 
variables that could make (XI,)(2 . . . . .  Xk) identical to ~ ,  I12, . . . ,  Xk). Unfortunately, 
this will not prevent unhelpful clauses such as 

R(X1) ~ not(X1, X~), R(X2) 

in which R(true) could call R(false) could call R(true) and so on. 
The current version of FOIL is more subtle, using the notion of an irreflexive partial order- 

ing, a transitive binary relation < on the constants such that x < x never holds for any 
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constant x. Consider a relation P(X~, X2, • . . ,  Xk) containing the constant tuples {(C1, C2, 
. • • ck)}. A partial ordering between two arguments Xi and Xj of P is deemed to exist if 
the transitive closure of the relationships {ci < cj} does not violate the restriction that 
no constant can be less than itself. Analogously, the negation of a relation can also establish 
a partial ordering among pairs of its arguments. 

A necessary condition for a recursive relation P to be properly specified is that no invo- 
cation of P can ever lead, directly or indirectly, to its invocation with the same arguments. 
In this clause, P(XI, X2, . •., Xk) invokes P(V~, V2, . . .  Vg) so, if P is to avoid this problem, 
the pairs of  tuples 

. . . ,  x k ) ,  . . . . .  vk)) 

must satisfy some partial ordering. As a sufficient approximation, we could require one 
of the pairs 

(Xl, V1), (X2, V2) . . . .  , (gk:, Vk) 

to satisfy such an ordering, which can only come from relationships among the variables 
established by one of the previous literals in this clause. FOIL requires a partial ordering 
between at least one pair (X i, 11/) before a recursive literal will be considered for inclusion 
in the clause. 

The second clause of the network example in Section 4.2 was 

can-reach(X1, X2) ~- linked-to(X1, X3), can-reach(X3, Xz). 

The relation linked-to(A, B) is consistent with a partial ordering A < B; the transitive closure 
of  a < b for each pair (a, b) in the relation does not violate the above restriction. The 
occurrence of  the literal linked-to(X1, X3) thus establishes a partial ordering Xx < X3. With 
this partial order established by the first literal, the recursive second literal satisfies the 
requirement with the first pair (X1, V~) above, where V~ is now X3. On the other hand, the 
literal can-reach(X2, X1) does not satisfy any such requirement--we have not established 
X1 < X2 or X2 < Xl - -and  so this literal would not be considered. 

This check may appear computationaUy expensive but such is not the case. Partial order- 
ings between pairs of  arguments of all given relations are determined only once, at the 
beginning of a run? Thereafter it is just a matter of  keeping track, for each clause, of  the 
partial orderings that have been established so far among the variables. The check is sufficient 
to ensure that a clause will never cause an improper  invocation of itself; the same idea 
can be extended to groups of clauses for the same relation? However, it is still an approx- 
imation and does not cover mutually recursive definitions of  different relations such as 
R(c) invoking S(c) invoking R(c) for some relations R and S and constant c. 

P r u n i n g :  A valuable side-effect of the form of the Gain heuristic discussed above is its 
support for significant pruning of the search space. Suppose that we have estimated the 
utility of an unnegated literal Li as 
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Gain(Li) = T ++ × (1(7]/) - I(T/+0). 

The literal Li may contain new (free) variables and their replacement with existing (bound) 
variables can never increase Ti ++, the number of • tuples in T,. satisfied by Li. Moreover, 
such replacement can at best produce a set T/_q containing only ~) tuples, i.e., with I(T/+I) 
= 0. Thus the maximum gain that can be achieved by any unnegated literal obtained by 
substituting bound variables for the free variables in Li is 

maximum gain = T ++ × I(Ti). 

If  this maximum gain is less than the best gain achieved by a literal so far, there is no 
need to investigate any literals obtained by such replacement. (An analogous argument can 
be formulated for negated literals.) Thus, for a relation Q, FOIL always gives priority to 
investigating literals Q(V~, V2, . . . ,  Vr) that contain many new variables and often achieves 
a dramatic reduction of the number of literals that must be considered. 

4.5. More advanced features 

This section concludes with two aspects of FOIL that go beyond the algorithm outlined in 
Section 4.1. The first concerns the ability to generate approximate rather than exact defini- 
tions of relations and the second involves improvement of completed clauses. 

Inexact definitions: In many real-world problems it is not possible to formulate rules that 
precisely characterize the domain. In such circumstances, many studies have found that 
simple, approximate concepts can be more valuable than overspecified rules that "fit the 
noise." In the case of classification knowledge expressed as decision trees or as rules, im- 
proved performance on unseen cases can be obtained by "pruning" (Breiman et al., 1984; 
Quinlan, 1987; Clark and Niblett, 1987). In this learning context, FO~L implements stopping 
criteria for deciding 

• that a clause should not be extended further, even though the current Ti is not yet free 
of 0 tuples, and 

• that a set of clauses should not be expanded, even though they do not cover all tuples 
in the target relation. 

These decisions are based on the perception that, for a sensible clause, the number of bits 
required to encode the clause should never exceed the number of bits needed to indicate 
explicitly the (~ tuples covered by the clause. This argument invokes Rissanen's Minimum 
Description Length principle (1983) and resembles that used by Quinlan and Rivest (1989). 

Suppose we have a training set of size IT[ and a clause accounts for p Q tuples that 
are in the target relation. The number of bits required to indicate those tuples explicitly 
is given by 
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log2(ITI) + l o g z ( ( [ T I  ) )  

On the other hand, the bits required to code a literal are 

1 
+log2 (number of relations) 

+log2 (number of possible arguments) 

(to indicate whether negated) 
(to indicate which relation) 
(to indicate which variables) 

A clause containing n literals needs the sum of these bits, reduced by log2(n!) since all 
orderings of the literals are equivalent (with the exception mentioned previously). The addi- 
tion of a literal L i tO a clause is ruled out if the bits required to encode the new clause 
exceed the bits needed to indicate the covered tuples. If no literals can be added to a clause 
but it is still reasonably accurate (taken here to mean at least 85%), the inexact clause 
is retained as a final clause. Similarly, if no further clause can be found within this encoding 
restriction, the incomplete set of clauses is taken as the definition of the target relation. 
In either case, the user is warned that the set of clauses is imperfect. 

Post-processing of clauses: Any greedy algorithm is prone to making locally optimal but 
globally undesirable choices. In this context, a literal chosen for the right-hand side of 
a clause may subsequently turn out to be unnecessary or even counterproductive. Once 
a clause has been developed, the literals of the right-hand side are examined to see whether 
any could be omitted without compromising the accuracy of the clause as a whole. Specific- 
ally, the new clause must cover all the (~ tuples covered by the old clause but must not 
cover additional O tuples. The usefulness of this simplication will be illustrated in one 
of the examples of Section 5.2. Similar pruning of rules in propositional domains has been 
found to lead to smaller, more accurate rulesets (Quinlan, 1987). 

5. Results 

This section presents results obtained by FOIL on a variety of learning tasks reported in the 
literature, thereby intending to establish that it is a powerful and general learning mechanism. 

5.1. Learning family relationships 

In a most interesting paper, Hinton (1986) describes a connectionist system for learning 
kinship relationships in two stylized isomorphic families, each with twelve members, as 
shown in Figure 2. He defines a network with 36 input units, three layers of hidden units, 
and 24 output units. The input units consist of one unit for each of the 24 individuals men- 
tioned in the family trees and one unit for each of the twelve given relationship types: wife, 
husband, mother, father, daughter, son, sister, brother, aunt, uncle, niece, and nephew. 
Each output unit is identified with one of the 24 individuals. An input to the network con- 
sists of setting on the units associated with one individual (B, say) and one relationship 
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C h r i s t o p h e r  = P e n e l o p e  A n d r e w  = C h r i s t i n e  
F J 

I I I I 
M a r g a r e t  = A r t h u r  V i c t o r i a  = J a m e s  J e n n i f e r  = C h a r l e s  

I 
I I 

C o l i n  C h a r l o t t e  

R o b e r t o  = M a r i a  P i e r r o  = F r a n c e s c a  
I I 

I L I I 
G i n a  = E m i l i o  L u c i a  = M a r c o  A n g e l a  - -  T o m a s o  

I 
I I 

A l f o n s o  S o p h i a  

Figure 2. Two family trees, where " = "  means "married to." (From Hinton, 1986.) 

(R). The desired output of the network is the set of individuals {A}, each of whom has 
relationship R to B. For example, if the input specified the relationship aunt and the person 
Colin, only the output units associated with Margaret and Jennifer should be on, indicating 
that Margaret and Jennifer are the aunts of Colin. 

The family trees in Figure 2 define 104 such input-output vector pairs. Hinton used a 
training set consisting of 100 of them with the remaining four pairs reserved as a test set. 
The network was initialized with random connection weights, allowed to learn appropriate 
values, and then evaluated on the four pairs in the test set. The experiment was then repeated 
with different initial weights. The network gave the correct output for all four of the test 
inputs in one trial and for three out of four in the other. (Note that, for an output to be 
correct, all 24 output units must have the correct on/off status; this extremely unlikely 
to occur by chance.) 

FOIL was also given the information provided by 100 of the input-output vectors selected 
randomly from the 104 available but encoded as tuples rather than vectors. Each input-output 
pair specifies a single person B and relation R, together with the desired output status for 
each of the 24 people. This gives 24 tuples of the form (A, B / for the relation R, the tuple 
being (~) if the output unit for A should be on and O otherwise. Clauses were found for 
each relation in turn. The four input-output vectors in the test set were then used to evaluate 
the clauses; as before, a test vector Was counted as correct only when the clauses for the 
relevant relation correctly predicted each of the 24 output bits. The experiment was repeated 
with different random divisions of the 104 relationships for a total of 20 trials. 

Over these 20 trials, FOIL was correct on 78 of the 80 test cases, bettering the 7 out of 
8 correct results reported by Hinton. Average time for each trial was 11 seconds on a DECsta- 
tion 3100. 

This learning task contains much further material for exploration, providing an excellent 
testbed for comparing many aspects of connectionist and symbolic learning approaches. 
Further experiments contrasting the approaches are being carried out and will be reported 
in a separate paper. 
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5.2. Learning recursive relations on lists 

Numerous authors have studied the task of learning list manipulation functions, among 
them (Shapiro, 1981, 1983; Sammut and Banerji, 1986; Muggleton and Buntine, 1988). 
Four examples from the list domain should illustrate the system's performance on this kind 
of task. 

The first example is to learn the definition of a (non-dotted) list. This task involves three 
relations: 

list(X) X is a list 
null(X) X is nil 
components(X, H, T) X has head H and tail T 

These relations are defined for four structures 

(), (a), (b(a)d), (e.f) 

and their substructures, specifically 

list" 
null: 
components: 

{(()), ((a)), ((b(a)d)}, (((a)d)), ((d))} 

{((a), a, ()), ((b(a)d), b, ((a)d)), 
(((a)d), (a), (d)), ((d), d, ()), ((e.f), e, 3~} 

with @ tuples provided by the closed-world asumption. From these, FOIL took less than 
0.1 seconds to find the standard textbook definition (in function-flee form) 

list(A) ~ components(A, B, C), list(C) 
list(A) ~ null(A) 

The second task is that of finding the definition of the member relation. Again there 
are three relations: 

member(X, Y) X is a member of list Y 

with null and components as before. In this example, FOIL was provided with all member- 
ship relations over the list 

(a b (c)) 

and its subcomponents, again invoking the closed-world assumption, and the system took 
0.1 seconds to find the usual definition 

member(A, B) *-- components(B, A, C) 
member(A, B) ~- components(B, C, D), member(A, D) 
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The astute reader will have noticed that the examples presented to FOIL for the list and 
member relations do not appear to have been generated randomly. In fact, they represent 
a simple set of examples that are somehow sufficient to discover the relations. The idea 
of selecting good examples from which to learn seems common in this domain and has 
been followed in all three systems cited above. 

The next two tasks investigate the much more demanding relations 

append(X, Y, Z) 
reverse(X, Y) 

appending X to Y gives Z 
X is the reverse of Y 

At the same time, any effect of selecting examples was neutralized by defining the relations 
over all lists of length up to four, each containing non-repeated atoms drawn from the set 
{1, 2, 3, 4}. This gives a total of 4! + 4 x 3! + 6 x 2! + 4 + 1 = 65 lists and4 atoms. 4 
For reverse, the system used the closed-world assumption in which the G tuples consisted 
of all tuples not in the relation. This was not possible for append--there are 69 s (or about 
330,000) 3-tuples over 69 constants--so the C) tuples were defined by selecting 10,000 of 
them at random. For append the other relations available were null, list and components 
and all of these (including append) were available for reverse. This is the same set of rela- 
tions used by Shapiro (1981), even though list is not required for either definition. 

The definition constructed for append in 188 seconds contains four clauses: 

append(A, B, 
append(A, B, 
append(A, B, 
append(A, B, 

C) ~ A = C, null(B) 
C) ~ B = C, null(A) 
C) ~ components(C, D, B), components(A, D, E), null(E) 
C) ~ components(C, D, E), components(A, D, F), append(F, B, E) 

The second and fourth of these make up the usual definition of append in function-free 
form. The first covers a special case of a null second argument; Tom Dietterich (Private 
Communication, June 1989) pointed out that this additional clause is often used to improve 
efficiency by preventing a needless recursive unwinding of the first argument. The third 
clause addresses the special case of a singleton first argument, and could well be omitted. 

This example also demonstrates the utility of post-processing clauses. The initial formu- 
lation of the final clause started with a literal components(E, G, B) which effectively limited 
the clause to cases where the first argument is a two-element list. When the clause had 
been completed, the post-processing noted that this literal could be omitted, resulting in 
the perfectly general clause shown. 

From the data for reverse, FOIL required 247 seconds to find the definition 

reverse(A, B) ~ A = B, null(A) 
reverse(A, B) '-- A = B, append(A, C, D), components(D, E, C) 
reverse(A, B) ~ append(C, D, A), append(D, E, B), components(B, F, E), reverse(C, E) 

Again, the second clause is strictly unnecessary, being a rather convoluted way of expressing 
the fact that a single-element list is its own reverse. 



LEARNING LOGICAL DEFINITIONS FROM RELATIONS 255 

The times required to find the definitions of these relations are much greater than those 
reported by Shapiro (1981), namely 11 and 6 seconds respectively on a DEC 2060. For these 
tasks, however, there has been no attempt to construct a minimal set of tuples from which 
suitable definitions can be found. FOIL is working with 10,261 tuples for append and 4,761 
for reverse compared to 34 and 13 respectively in the case of Shapiro's MIS system. On 
the other hand, FOIL is probably incapable of finding adequate definitions from such small 
numbers of tuples. Whereas MIS'S search for clauses is guided and constrained by external 
information (e.g., it can ask questions), FOIL navigates by extracting information-based 
hints from the data. The Gain heuristic is essentially a statistical measure; as clauses become 
more complex, sensible choice of the first literals depends on being able to distinguish 
helpful clues from simple random variations and this is harder if the number of tuples in 
the training set is small. 

5.3. Learning the concept of an arch 

Winston (1975) describes the task of learning the nature of an arch from four objects, two 
of which are arches and two not, as shown in Figure 3. The domain involves several relations: 

arch(A, B, C) 
supports(A, B) 
left-of(A, B) 
touches(A, B) 
brick(A) 
wedge(A) 
parallelpiped(A, B) 

A, B and C form an arch with lintel A 
A supports B 
A is left of B 
the sides of A and B touch 
A is a brick 
A is a wedge 
A is a brick or a wedge 

which are used to describe the four objects and their 12 components. FOIL takes 1.2 seconds 
to find the definition 

arch(A, B, C) (-- left-of(B, C), supports(B, A), --1 touches(B, C) 

It is interesting to note the difference between this definition and the concept enunciated 
by Winston's program. Since FOIL looks for concepts in a general-to-specific fashion, it 
only discovers descriptions that are minimally sufficient to distinguish tuples in the relation 
from other tuples, which Dietterich and Michalski (1981) refer to as maximally general 

Figure 3. Arches and near misses. (From Winston, 1975.) 
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descriptions. In this case, FOIL never formulates a requirement that the lintel be either a 
block or a wedge, or that both sides support it, because it has never seen 'near misses,' 
in Winston's terms, that make these properties relevant. FOIL would require a description 
of  many more objects in order to elaborate its definition of the relation arch. 

5.4. Learning where trains are heading 

In a paper introducing his INDUC~ system, Michalski (1980) describes an artificial task 
of  learning to predict whether a train is headed east or  west. This task illustrates the kind 
of structured objects with varying numbers of substructures that cause problems for attribute- 
value representation; the ten trains of Figure 4 have different numbers of cars and some 
cars carry more than one load. Five of the trains are heading east and five west. This time 
there is a plethora of relations: 

eastbound(T) 
has-car(T, C) 
infront(C, D) 
long(C) 
open-rectangle(C) 

jagged-top(C) 
sloping-top(C) 
open-top(C) 
contains-load(C, L) 
1-item(C) 

2-wheels(C) 
3-wheels(C) 

train T is eastbound 
C is a car of T 
car C is in front of  D 
car C is long 
car C is shaped as an open rectangle 
similar relations for five other shapes 
C has a jagged top 
C has a sloping top 
C is open 
C contains load L 
C has one load item 
similar relations for two and three load items 
C has two wheels 
C has three wheels 

From the 180-odd tuples in these relations, FOIL takes 0.2 seconds to find the definition 

eastbound(A) ~ has-car(A, B), ~ long(B), -~ open-top(B) 

1. TRAINS GOING E A S T  

, .  

,, 

, 

Figure 4. Ten trains. (From Michalski, 1980.) 
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which is the same concept found by INDUCE. If the problem is turned around by replacing 
eastbound by westbound, FOIL finds the clause 

westbound(A) +-- has-car(A, B), long(B), 2-wheels(B), --1 open-top(B) 

that explains three of the five westbound trains, but the encoding length heuristics prevent 
it discovering another clause. INDUCE, on the other hand, uses its ability to generate new 
descriptors, here counting the cars (including the engine) in each train. It then finds a rule 
which might be expressed by the clauses 

westbound(A) *-- car-count(A) = 3 
westbound(A) *-- has-car(A, B), jagged-top(B). 

5.5. Chess endgame 

Muggleton, Bain, Hayes-Michie, and Michie (1989) describe a learning task that nicely 
demonstrates the utility of being able to generate imperfect but accurate definitions. The 
domain is the chess endgame White King and Rook versus Black King. The target relation 
is the six-place predicate illegal(A, B, C, D, E, F) indicating that the position in which 
the White King is at (A, B), the Rook at (C, D), and the Black King at (E, F) is not a 
legal Black-to-move position. There are two other relations available: 

adj(X, Y) 
less-than(X, Y) 

row or column X is adjacent to Y 
row or column X is less than Y 

A training set for this task consists of a random sample of positions, some of which (about 
34%) are illegal and some not. Experiments were carried out with training sets containing 
100 positions and 1000 positions. The learned definition was then tested on a large random 
sample of positions selected independently to the training sets. Note that there is no simple 
correct definition of illegal in terms of the given relations. The amount of information pro- 
vided by training sets of this size is probably insufficient to allow any learning system to 
discover an exact set of clauses. 

Table 1 shows results reported by Muggleton et al. for two systems, CIGOL and DUC~, 
that learn clauses. Each experiment was performed five times; the accuracies shown are 
the averages obtained over 5,000 unseen cases and the approximate times are for a Sun 

Table L Results on the chess endgame task. 

100 training objects 1000 training objects 

System Accuracy Time Accuracy Time 

CIGOL 77.2% 21.5 hr N/A N/A 
DUCE 33.7% 2 hr 37.7% l0 hr 

FOIL 92.5% sd 3.6% 1.5 see 99.4% sd 0.1% 20.8 sec 
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3/60. The table also gives similar results for FOIL averaged over 10 repetitions; times are 
for a DECstation 3100 and accuracies were determined over 10,000 unseen positions. FOIL 
finds more accurate definitions than CIGOL or DUCE, and requires much less time than can 
be accounted for by differences in hardware and implementation language. 

As an example, the clauses found by FOIL on the first trial with 100 training objects are 

illegal(A, B, C, D, E, F) "-- C = E 
illegal(A, B, C, D, E, F) ~ D = F 
illegal(A, B, C, D, E, F) ~ adj(B, F), adj(A, E) 
illegal(A, B, C, D, E, F) ~ A = E, B = F 
illegal(A, B, C, D, E, F) ~ A = C, B = D 

These may be paraphrased as: a position is illegal if the Black King is on the same row 
or colmnn as the Rook, or the White King's row and column are both next to the Black 
King's, or the White King is on the same square as the Black King or the Rook. The clauses 
are certainly not exact--they cover only 30 of the 32 illegal tuples in this training set--but 
they correctly classify better than 95% of the 10,000 unseen cases. 

5.6. Eleusis 

The final task concerns the card game Eleusis in which players attempt to learn rules govern- 
ing sequences. The dealer invents a secret rule specifying the conditions under which a 
card can be added to a sequence of cards. The players attempt to add to the current sequence; 
each card played is either placed to the right of the last card in the sequence if it is a legal 
successor, or placed under the last card if it is not. The horizontal main line thus represents 
the sequence as developed so far while the vertical side lines show incorrect plays. 

Figure 5 contains three game layouts taken from Dietterich and Michalski (1986), all 
of  which arose in human play. The same paper describes SPARC/E, a system that tries to 
discover the dealer's rule from given layouts, i.e., the system learns from passive observa- 
tion rather than experimentation. SPARC/E handled these problems well, producing a few 
hypotheses that included a reasonable rule in each case, and requiring only 0.5 to 6.5 seconds 
on a CV~ER 175 to do so. 

The same problems were presented to FOIL. After some experimentation, the following 
relations were set up to capture information noted by Dietterich and Michalski that is rele- 
vant to these examples: 

can-follow(A, B, C, D, E, F) 

precedes(X, Y) 
lower(X, Y) 
face(X) 
same-color(X, Y) 
odd(X) 

card A (suit B) can follow a sequence ending with 
• card C (suit D), 
• E consecutive cards of  suit D, and 
• F consecutive cards of  the same color 
suit/rank X precedes suit/rank Y 
suit/rank X is lower than suit/rank Y 
rank X is a face card 
suits X and Y are the same color 
rank/length X is odd 
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Figure 5. Three Eleusis layouts. (From Dietterich and Michalski, 1986.) 

Each card other than the first in the sequence gives a tuple for the target can-follow rela- 
tion, ~) if the card appears in the main line and @ if it is in a side line. 

For the first layout, FOIL found the clauses 

can-follow(A, B, C, D, E, F) *-- same-color(B, D) 
can-follow(A, B, C, D, E, F) *-- odd(F), odd(A) 

in 0.1 seconds. The rule, which can be paraphrased "completed color sequences must be 
odd and must end with an odd card," does not account for one card in the main line. The 
rule intended by the dealer, "completed color sequences must be odd, and a male card 
cannot appear next to a female card," uses information on card sex that is not encoded 
in the above relations. Interestingly, SPARC/E also finds the inexact rule "completed sequences 
must be odd" which errs the other way in being too general. 

The second layout gave 

can-follow(A, B, C, D, E, F) ~ face(A), ~face(C) 
can-follow(A, B, C, D, E, F) ~ face(C), -l face(A) 

("play alternate face and non-face cards"  the rule intended by the dealer) in 0.2 seconds. 
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The third layout presented a different problem. FOIL found the single clause 

can-follow(A, B, C, D, E, F) ~ precedes(B, D), -~ lower(A, C) 

("play a higher card in the suit preceding that of the last card") in 0.2 seconds, but the en- 
coding heuristics judged that the layout contained insufficient information to support another 
clause. The system does not discover the other half of the rule ("play a lower card in the 
suit following that of the last card") unless the main line is extended with two more cards. 

Both SPACE/E and FOIL are quite competent in this domain, but they differ in one impor- 
tant respect. Whereas SPACE/E generates several hypotheses, some of which may be too 
complex to be justified by the given layout, FOIL plumps for a single hypothesis which 
may be incomplete if the layout is small. 

5.7. On evaluation 

This section has discussed FOIL'S performance on examples from six learning domains. 
In only two of these, the family and chess endgame tasks, have the learned rules been eval- 
uated by the acid test of using them to classify unseen cases. While this is the most convinc- 
ing proof that useful learning has occurred, it depends on the existence of a substantial 
body of examples from which to extract training and test sets, and so is ruled out for tasks 
like arch and trains. The purpose in these other sections has been to show that FOIL can 
discover exact definitions (as in the list manipulation domain), or can find concepts similar 
to those produced by other learning systems when given similar input. 

6. Limitations of FOIL 

The previous section notwithstanding, it is not difficult to construct tasks on which the 
current version 5 of FOIL will fail. As a simple illustration, consider the relations 

P: {(1), (2)} 
A: {(1, t), (2, JS, (3, t), (4, JS} 
B: {(1, t), (2, t), (3, f) ,  (4, J)} 
C: {(1, 3'), (2, t), (3, y'), (4, t)} 
Q: {(t)} 

When we are looking for the first literal of the first clause for the target relation P, the 
three literals A(X~, Xz), B(X1, X2), and C(X~, X2) have identical utilities as measured by 
the Gain heuristic, but only one of them (the second) leads to any definition for P. There 
is no way that FOIL can pick the winner. Having chosen the first, however, FOIL paints itself 
into a corner--there is no completion of the clause that gives an acceptably accurate rule--so 
the search fails. The same lack of lookahead can make FOIL quite sensitive to the way rela- 
tions are formulated for a task. 

This highlights the most glaring weakness of the system, namely the greedy search used 
to assemble clauses from literals. FOIL carries out a quasi-exhaustive search of combina- 
tions of variables when evaluating a possible literal Q(V~, V2 . . . .  , Vr) but, having selected 
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one, the search for a clause does not explore any alternatives. The former search is usually 
not expensive as the number of possible values for each V/is small (since Vi is either one 
of the variables already bound in this clause or a new variable), and the pruning discussed 
earlier is quite effective. A similar exhaustive search is far too expensive for the stepwise 
construction of clauses, but two alternatives to greedy search suggest themselves: 

• Beam search: In the style of AQ and CN2, this strategy retains the best N partial struc- 
tures at each step, for some fixed N, and so reduces the global impact of a single poorly- 
chosen literal. The advantage of beam search is that it increases search effort by just 
a constant factor N. 

• Checkpoints: In this approach, choice points at which two or more alternatives appear 
to be roughly equal are flagged. If the greedy search fails, the system reverts to the most 
recent checkpoint and continues with the next alternative. 

Future versions of FOIL will incorporate one of these more sophisticated search paradigms 
in an attempt to overcome the short-sightedness discussed above without incurring an expo- 
nential increase in computational cost. 

Another present limitation arises from the lack of continuous values, since all constants 
are assumed to be discrete. It appears likely that this deficiency can easily be overcome 
by allowing typed constants and literals of the form X i > t, where X/is a variable with 
real values and t is some threshold. Techniques such as that described by Breiman et al. 
(1984) enable attribute-value systems to make perceptive choices of suitable thresholds, 
and there seems no reason why the same techniques should not function equally well in 
FOIL'S environment. 

The restriction of definitions to Horn clause logic is another weakness, this time a funda- 
mental one. Although the language is sufficient for many learning tasks, it is a proper subset 
of first-order logic and cannot express some concepts. In the blocks world studied by Vere 
(1978), for instance, a rule describing a legal robot action needs to express the idea that 
one block is moved but all other blocks remain unchanged. In first-order logic we might 
write something like 

X is moved A ¥ Y  (Y ~ X ---r y is not moved) 

but there is no way to express this in Horn clause logic using the same predicates because 
all variables on the right-hand side of a clause are existentially, not universally, quantified. 

As noted earlier, the methods used by FOXL to avoid infinitely recursive definitions are 
incomplete. The system can currently guarantee that no single clause will cause a problem 
in this respect, and the same ideas can be extended to all clauses for a particular relation. 
This seems to permit the discovery of many common recursive definitions, but it is still 
only an approximation. It should be possible to develop more flexible criteria, perhaps 
by empirical testing of definitions to see whether trial cases cause problems in this respect. 

This section has highlighted some of the deficiencies of FOIL. In the next and final section, 
the strengths and weaknesses of the system are examined in comparison with other learning 
approaches that tackle similar tasks. 
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7. Discussion 

FOIL was originally conceived as a vehicle for adapting the simple attribute-value learning 
techniques of Section 2 to Hinton's kinship learning task described in Section 5.1. Along 
the way it was extended to the general learning method discussed in this paper. It seems 
appropriate to conclude by comparing it to some other symbolic learning systems that pro- 
duce first-order rules. 

Two key ideas underpinning many such systems are proof and maximally specific general- 
ization. Shapiro's (1981, 1983) MIS, for example, constructs theories incrementally from 
specific facts. When it encounters a fact that is inconsistent with the current theory, MIS 
walks back up the proof tree that establishes the contradiction and frames questions about 
other specific facts that allow it to isolate the flaws in the theory. Proof also is the central 
operation in all explanation-based learners (Mitchell et al., 1986; DeJong and Mooney, 
1986). On the other hand, systems like SPROUTER (Hayes-Roth and McDermott, 1977) and 
THOTH-P (Vere, 1978) find all properties common to a collection of examples of a concept 
and use the conjunction of these properties as a general description of the concept. Such 
an approach makes it possible to learn from only positive examples of a concept; Dietterich 
and Michalski (1981) provide an analytical review of this use of generalization. Anderson 
and Kline's (1979) ACT also uses maximally specific generalization of two examples repre- 
sented as a conjunction of properties, although ACT also uses feedback on incorrect over- 
generalizations to debug faulty learned concepts; in this sense it resembles MIS, but the 
correction is heuristic rather than proof-based. 

FOIL has no notion of proof--the validity of a clause is investigated by looking for specific 
counter-examples in the training set. Moreover, the system looks for maximally general 
descriptions that allow positive examples to be differentiated from negative ones, rather 
than maximally specific descriptions that express all shared properties of subsets of positive 
examples. FOIL cannot learn anything from (~) tuples alone and needs either explicit @ 
tuples or the closed-world assumption. 

Langley's (1985) SAGE.2 uses discrimination as the mechanism for learning first-order 
production rules. The domain is state-space problem-solving in which a sequence of transfor- 
mations is sought which will change an initial state to one satisfying a goal. The role of 
SAGE.2'S rules is to suggest transformations in a given context, i.e., the current state and 
information about how it was obtained from the initial state. When a transformation sug- 
gested by a rule R is subsequently found to be inappropriate, SAGE.2 examines this rejection 
context and the most recent selection context in which the rule's recommendation was useful. 
A new rule is constructed that adds to the antecedent of R some logical expression satisfied 
by the selection context but not by the rejection context. New variables are introduced to 
replace constants (in clause terminology), so that the new rule will be useful in other contexts. 

SAGE.2 thUS constructs a rule from an existing rule and two (ground) instances of its use, 
and does so in one step. ACT (Anderson and Kline, 1979) likewise constructs a first-order 
rule from two ground instances. If  the instances are of the same class, ACT generalizes 
by introducing variables where the instances have different constants, imposing a limit on 
the proportion of constants that can be replaced. I f  the instances belong to different classes, 
the system discriminates by substituting a constant for one existing variable, or adding to 
the rule antecedent conditions that limit the possible values of one variable. Both these 



LEARNING LOGICAL DEFINITIONS FROM RELATIONS 263 

systems thus use two specific instances to suggest the form of a new or revised rule and 
what variables the rule should contain. This is a very different approach to that adopted 
by FOIL in which a much larger space of possible rules is explored by adding literals one 
at a time, looking at combinations of existing and new variables at each step, but guided 
by all relevant instances rather than just two. 

Two other systems, KATE (Manago, 1989) and GAR~ANTUBRAIN (Brebner, 1988), also 
extend empirical learning methods to the discovery of first-order rules. KATE represents 
information about objects in frames and produces an extended decision tree in which a 
test at an internal node may involve a new, existentially quantified variable. GARGANTUBRAIN 
produces general first-order descriptions of positive examples, themselves represented by 
ground Horn clauses. The rule language allows the negation of arbitrary logical expressions 
to appear in the right-hand side of a clause, a useful extension of standard Horn clause 
logic. However, neither system can find recursive definitions, a limitation that also applies 
to most systems whose primary operation is generalization, with the exception of MARVIN 
(Sammut and Banerji, 1986). 

Systems such as SPROUTER (Hayes-Roth and McDermott, 1977), MIS (Shapiro, 1981, 1983), 
Winston's (1975) structural learning program, and MARVIN (SaIIlnqut and Banerji, 1986) 
are incremental learners; they can modify what has been learned in the light of new objects. 
FOIL requires all tuples for a relation to be available before any clause is generated. However, 
Schlimmer and Fisher (1986) showed that the non-incremental lO3 could be transformed 
into the quasi-incremental ID'~3 by the following strategy: if the current rule performs satis- 
factorily on the current training instance, leave the rule unchanged; otherwise, form a new 
rule by invoking ID3 on all the training instances received to date. A similar approach might 
be possible with FOIL. 

Some systems, such as INDUCE (Michalski, 1980) and CIGOL (Muggleton and Buntine, 
1988), can suggest new predicates that simplify the definitions they are constructing. FOIL 
does not have any mechanism of this kind, since it is restricted to finding a definition of 
a target relation in terms of the available relations. However, the techniques for inventing 
new predicates that have been developed in such systems might perhaps be grafted onto 
FOIL, thereby expanding its vocabulary of literals and assisting its search for simple clauses. 

Learning logical defnitions requires the exploration of a very large space of theory descrip- 
tions. Authors such as Shapiro (1981, 1983), Sammut and Banerji (1986), and Muggleton 
and Buntine (1988) finesse this problem by postulating the existence of an oracle that answers 
questions posed by their systems. In Shapiro's MIS this guidance includes specifying the 
validity of ground facts, while in MARVIN and CIGOL it is confirmation of the correctness 
of proposed generalizations. In either case, the existence of such an oracle can prevent 
the systems' setting off down fruitless paths. FOIL, on the other hand, uses only the informa- 
tion represented by the given relations in the form of sets of constant tuples. Conversely, 
FOTL will usually require more data than these systems, since it is dependent on information 
implicit in this data to guide search. 

None of the current systems for constructing first-order rules seem to have addressed 
the question of inexact clauses, although this is a common concern in empirical systems 
using attribute-value descriptions, as discussed, for example, by Breiman et al. (1984). In 
this respect, FOIL seems to be unique. 



264  J.R. QUINLAN 

FOIL finds definitions of relations one at a thne, using other relations as a kind of back- 
ground knowledge. In this sense, FOIL is much more restricted than explanation-based 
learners (Mitchell et al., 1986; DeJong and Mooney, 1986) in the way background knowledge 
can be expressed. Although it would be possible to allow a background relation to be rep- 
resented by an arbitrary program that determines whether a given constant tuple is in the 
relation (Pat Langley, Personal Communication, June 1989), this would require considerably 
more computation than the current algorithm's use of explicit tuples. 

In summary, then FOIL has several good points: it 

• uses efficient methods adapted from attribute-value learning systems 
• can find recursive definitions 
• can develop inexact but useful rules 
• does not require an oracle. 

On the negative side, the system 

• is restricted to rules expressible in function-free Horn clauses 
• cannot postulate new predicates 
• requires a training set for the target relation that contains both Q and @ tuples 
• is not incremental 
• is based on a short-sighted, greedy algorithm. 

Future extensions will address at least the last of these issues. Even in its present state, 
FOIL can cope with a wide range of learning tasks that have been investigated with other 
systems. The goal of this research is to develop a system capable of handling learning tasks 
of practical significance. For example, FOIL'S input consists of constant tuples in relations, 
the same form as that used for storing information in relational databases. One application 
for an improved FOIL would be to discover regularities, expressed as clauses, in a large 
volume of real-world information. 
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Notes 

1. Since the clause-generating process does not make use of clauses already found for other relations, the order 
in which relations are considered is immaterial. 

2. The cost of ruling out a partial ordering between two arguments of a relation is at most proportional to the 
square of the number of constants; in practice, it is very small. 

3. At a cost of ensuring that the different partial orderings used by different clauses in the group are mutually 
consistent. 
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4. The current experimental coding of FOIL is limited to 128 constants and so is unable to accommodate all lists 
of length up to five, or any greater number. 

5. The present VO~L, which should perhaps be called voie.0, is a 2300-line program written in C. It incorporates 
some niceties (such as the construction of relation indexes to permit an efficient join operation) but suffers 
from many annoying restrictions (e.g., constants must be denoted by a single character). The code, such as 
it is, is available on request. 
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