
Clustering and
Dimensionality Reduction



Preview

• Clustering

– K-means clustering

– Mixture models

– Hierarchical clustering

• Dimensionality reduction

– Principal component analysis

– Multidimensional scaling

– Isomap



Unsupervised Learning

• Problem: Too much data!

• Solution: Reduce it

• Clustering: Reduce number of examples

• Dimensionality reduction:
Reduce number of dimensions



Clustering

• Given set of examples

• Divide them into subsets of “similar” examples

• How to measure similarity?

• How to evaluate quality of results?



K-Means Clustering

• Pick random examples as initial means

• Repeat until convergence:

– Assign each example to nearest mean

– New mean = Average of examples assigned to it



K-Means Works If . . .

• Clusters are spherical

• Clusters are well separated

• Clusters are of similar volumes

• Clusters have similar numbers of points



Mixture Models

P (x) =

nc
∑

i=1

P (ci)P (x|ci)

Objective function: Log likelihood of data

Naive Bayes: P (x|ci) =
∏nd

j=1
P (xj |ci)

AutoClass: Naive Bayes with various xj models

Mixture of Gaussians: P (x|ci) = Multivariate Gaussian

In general: P (x|ci) can be any distribution



Mixtures of Gaussians
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The EM Algorithm

Initialize parameters ignoring missing information

Repeat until convergence:

E step: Compute expected values of unobserved variables,
assuming current parameter values

M step: Compute new parameter values to maximize
probability of data (observed & estimated)

(Also: Initialize expected values ignoring missing info)



EM for Mixtures of Gaussians

Initialization: Choose means at random, etc.

E step: For all examples xk:

P (µi|xk) =
P (µi)P (xk|µi)

P (xk)
=

P (µi)P (xk|µi)
∑

i′
P (µi′)P (xk|µi′)

M step: For all components ci:
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Mixtures of Gaussians (cont.)

• K-means clustering ≺ EM for mixtures of Gaussians

• Mixtures of Gaussians ≺ Bayes nets

• Also good for estimating joint distribution of
continuous variables



Hierarchical Clustering

• Agglomerative clustering

– Start with one cluster per example

– Merge two nearest clusters
(Criteria: min, max, avg, mean distance)

– Repeat until all one cluster

– Output dendrogram

• Divisive clustering

– Start with all in one cluster

– Split into two (e.g., by min-cut)

– Etc.



Dimensionality Reduction

• Given data points in d dimensions

• Convert them to data points in r < d dimensions

• With minimal loss of information



Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector µ and covariance matrix Σ
of original points

2. Compute eigenvectors and eigenvalues of Σ

3. Select top r eigenvectors

4. Project points onto subspace spanned by them:

y = A(x − µ)

where y is the new point, x is the old one,
and the rows of A are the eigenvectors



Multidimensional Scaling

Goal: Find projection that best preserves inter-point
distances

xi Point in d dimensions

yi Corresponding point in r < d dimensions

δij Distance between xi and xj

dij Distance between yi and yj

• Define (e.g.) E(y) =
∑

i,j

(

dij − δij

δij

)2

• Find yi’s that minimize E by gradient descent

• Invariant to translations, rotations and scalings



Isomap

Goal: Find projection onto nonlinear manifold

1. Construct neighborhood graph G:
For all xi, xj

If distance(xi, xj) < ǫ

Then add edge (xi, xj) to G

2. Compute shortest distances along graph δG(xi, xj)
(e.g., by Floyd’s algorithm)

3. Apply multidimensional scaling to δG(xi, xj)



Summary

• Clustering

– K-means clustering

– Mixture models

– Hierarchical clustering

• Dimensionality reduction

– Principal component analysis

– Multidimensional scaling

– Isomap


