Clustering and Dimensionality Reduction

Preview

- Clustering
 - K-means clustering
 - Mixture models
 - Hierarchical clustering
- Dimensionality reduction
 - Principal component analysis
 - Multidimensional scaling
 - Isomap

Unsupervised Learning

- Problem: Too much data!
- Solution: Reduce it
- Clustering: Reduce number of examples
- Dimensionality reduction: Reduce number of dimensions

Clustering

- Given set of examples
- Divide them into subsets of "similar" examples
- How to measure similarity?
- How to evaluate quality of results?

K-Means Clustering

- Pick random examples as initial means
- Repeat until convergence:
 - Assign each example to nearest mean
 - New mean = Average of examples assigned to it

K-Means Works If ...

- Clusters are spherical
- Clusters are well separated
- Clusters are of similar volumes
- Clusters have similar numbers of points

Mixture Models

$$P(x) = \sum_{i=1}^{n_c} P(c_i) P(x|c_i)$$

Objective function: Log likelihood of data **Naive Bayes:** $P(x|c_i) = \prod_{j=1}^{n_d} P(x_j|c_i)$ **AutoClass:** Naive Bayes with various x_j models **Mixture of Gaussians:** $P(x|c_i) =$ Multivariate Gaussian **In general:** $P(x|c_i)$ can be any distribution

Mixtures of Gaussians

Х

$$P(x|\mu_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu_i}{\sigma}\right)^2\right]$$

p(x)

The EM Algorithm

Initialize parameters ignoring missing information

Repeat until convergence:

- **E step:** Compute expected values of unobserved variables, assuming current parameter values
- M step: Compute new parameter values to maximize probability of data (observed & estimated)

(Also: Initialize expected values ignoring missing info)

EM for Mixtures of Gaussians

Initialization: Choose means at random, etc. **E step:** For all examples x_k :

$$P(\mu_i | x_k) = \frac{P(\mu_i) P(x_k | \mu_i)}{P(x_k)} = \frac{P(\mu_i) P(x_k | \mu_i)}{\sum_{i'} P(\mu_{i'}) P(x_k | \mu_{i'})}$$

M step: For all components c_i :

$$P(c_{i}) = \frac{1}{n_{e}} \sum_{k=1}^{n_{e}} P(\mu_{i}|x_{k})$$

$$\mu_{i} = \frac{\sum_{k=1}^{n_{e}} x_{k} P(\mu_{i}|x_{k})}{\sum_{k=1}^{n_{e}} P(\mu_{i}|x_{k})}$$

$$\sigma_{i}^{2} = \frac{\sum_{k=1}^{n_{e}} (x_{k} - \mu_{i})^{2} P(\mu_{i}|x_{k})}{\sum_{k=1}^{n_{e}} P(\mu_{i}|x_{k})}$$

Mixtures of Gaussians (cont.)

- K-means clustering \prec EM for mixtures of Gaussians
- Mixtures of Gaussians \prec Bayes nets
- Also good for estimating joint distribution of continuous variables

Hierarchical Clustering

- Agglomerative clustering
 - Start with one cluster per example
 - Merge two nearest clusters
 (Criteria: min, max, avg, mean distance)
 - Repeat until all one cluster
 - Output dendrogram
- Divisive clustering
 - Start with all in one cluster
 - Split into two (e.g., by min-cut)
 - Etc.

Dimensionality Reduction

- Given data points in d dimensions
- Convert them to data points in r < d dimensions
- With minimal loss of information

Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

- 1. Compute mean vector μ and covariance matrix Σ of original points
- 2. Compute eigenvectors and eigenvalues of Σ
- 3. Select top r eigenvectors
- 4. Project points onto subspace spanned by them:

$$y = A(x - \mu)$$

where y is the new point, x is the old one, and the rows of A are the eigenvectors

Multidimensional Scaling

Goal: Find projection that best preserves inter-point distances

- x_i Point in d dimensions
- y_i Corresponding point in r < d dimensions
- δ_{ij} Distance between x_i and x_j
- d_{ij} Distance between y_i and y_j

• Define (e.g.)
$$E(\mathbf{y}) = \sum_{i,j} \left(\frac{d_{ij} - \delta_{ij}}{\delta_{ij}}\right)^2$$

- Find y_i 's that minimize E by gradient descent
- Invariant to translations, rotations and scalings

Isomap

Goal: Find projection onto *nonlinear* manifold

- 1. Construct neighborhood graph G: For all x_i, x_j If distance $(x_i, x_j) < \epsilon$ Then add edge (x_i, x_j) to G
- 2. Compute shortest distances along graph $\delta_G(x_i, x_j)$ (e.g., by Floyd's algorithm)
- 3. Apply multidimensional scaling to $\delta_G(x_i, x_j)$

Summary

- Clustering
 - K-means clustering
 - Mixture models
 - Hierarchical clustering
- Dimensionality reduction
 - Principal component analysis
 - Multidimensional scaling
 - Isomap