Inductive Learning

Supervised Learning

- Given: Training examples $\langle \mathbf{x}, f(\mathbf{x}) \rangle$ for some unknown function f.
- Find: A good approximation to f.

Example Applications

- Credit risk assessment
 - **x**: Properties of customer and proposed purchase. $f(\mathbf{x})$: Approve purchase or not.

• Disease diagnosis

x: Properties of patient (symptoms, lab tests) $f(\mathbf{x})$: Disease (or maybe, recommended therapy)

• Face recognition

x: Bitmap picture of person's face $f(\mathbf{x})$: Name of the person.

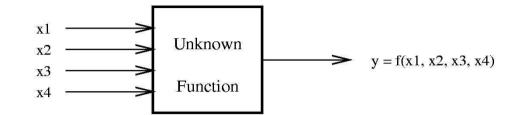
• Automatic Steering

- **x**: Bitmap picture of road surface in front of car.
- $f(\mathbf{x})$: Degrees to turn the steering wheel.

Appropriate Applications for Supervised Learning

- Situations where there is no human expert
 - **x**: Bond graph for a new molecule.
 - $f(\mathbf{x})$: Predicted binding strength to AIDS protease molecule.
- Situations where humans can perform the task but can't describe how they do it.
 - **x**: Bitmap picture of hand-written character
 - $f(\mathbf{x})$: Ascii code of the character
- Situations where the desired function is changing frequently
 x: Description of stock prices and trades for last 10 days.
 f(x): Recommended stock transactions
- \bullet Situations where each user needs a customized function f
 - **x**: Incoming email message.
 - $f(\mathbf{x})$: Importance score for presenting to user (or deleting without presenting).

A Learning Problem



Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Hypothesis Spaces

• **Complete Ignorance.** There are $2^{16} = 65536$ possible boolean functions over four input features. We can't figure out which one is correct until we've seen every possible input-output pair. After 7 examples, we still have 2^9 possibilities.

<i>m</i> .	<i>m</i> -	m -	<i>m</i> .	
x_1	x_2	x_3	x_4	y
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0 ? ?
1	0	0	0	?
1	0	0	1	1
1	0	1	0	? ?
1	0	1	1	?
1	1	0	0	0 ?
1	1	0	1	?
1	1	1	0	?
_1	1	1	1	?

Hypothesis Spaces (2)

• Simple Rules. There are only 16 simple conjunctive rules.

Rule	Counterexample		
$\Rightarrow y$	1		
$x_1 \Rightarrow y$	3		
$x_2 \Rightarrow y$	2		
$x_3 \Rightarrow y$	1		
$x_4 \Rightarrow y$	7		
$x_1 \ \land \ x_2 \Rightarrow y$	3		
$x_1 \ \land \ x_3 \Rightarrow y$	3		
$x_1 \ \land \ x_4 \Rightarrow y$	3		
$x_2 \ \land \ x_3 \Rightarrow y$	3		
$x_2 \ \land \ x_4 \Rightarrow y$	3		
$x_3 \ \land \ x_4 \Rightarrow y$	4		
$x_1 \ \land \ x_2 \ \land \ x_3 \Rightarrow y$	3		
$x_1 \ \land \ x_2 \ \land \ x_4 \Rightarrow y$	3		
$x_1 \ \land \ x_3 \ \land \ x_4 \Rightarrow y$	3		
$x_2 \ \land \ x_3 \ \land \ x_4 \Rightarrow y$	3		
$x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3		

No simple rule explains the data. The same is true for simple clauses.

Hypothesis Space (3)

• *m*-of-*n* rules. There are 32 possible rules (includes simple conjunctions and clauses).

	Counterexample				
variables	1-of	2-of	3-of	4-of	
$\{x_1\}$	3	_	-	3 <u></u> 6	
$\{x_2\}$	2		-	30	
$\{x_3\}$	1	-	_		
$\{x_4\}$	7	10-00		310	
$\{x_1, x_2\}$	3	3	_	8	
$\{x_1,x_3\}$	4	3	1000	a <u></u> a	
$\{x_1,x_4\}$	6	3		56	
$\{x_2,x_3\}$	2	3	6	10 11	
$\{x_2,x_4\}$	2	3		3	
$\{x_3,x_4\}$	4	4	_	18 10	
$\{x_1,x_2,x_3\}$	1	3	3		
$\{x_1,x_2,x_4\}$	2	3	3	s <u>-</u> 5	
$\{x_1,x_3,x_4\}$	1	***	3	2	
$\{x_2,x_3,x_4\}$	1	5	3	s <u></u> s	
$\{x_1, x_2, x_3, x_4\}$	1	5	3	3	

Two Views of Learning

- Learning is the removal of our remaining uncertainty. Suppose we knew that the unknown function was an m-of-n boolean function, then we could use the training examples to infer which function it is.
- Learning requires guessing a good, small hypothesis class. We can start with a very small class and enlarge it until it contains an hypothesis that fits the data.

We could be wrong!

- Our prior knowledge might be wrong
- Our guess of the hypothesis class could be wrong The smaller the hypothesis class, the more likely we are wrong.

Example: $x_4 \wedge Oneof\{x_1, x_3\} \Rightarrow y$ is also consistent with the training data.

Example: $x_4 \land \neg x_2 \Rightarrow y$ is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new x values.

Two Strategies for Machine Learning

- Develop Languages for Expressing Prior Knowledge: Rule grammars and stochastic models.
- **Develop Flexible Hypothesis Spaces:** Nested collections of hypotheses. Decision trees, rules, neural networks, cases.

In either case:

• Develop Algorithms for Finding an Hypothesis that Fits the Data

Terminology

- Training example. An example of the form $\langle \mathbf{x}, f(\mathbf{x}) \rangle$.
- Target function (target concept). The true function f.
- Hypothesis. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which $f(\mathbf{x}) = 1$ are called **positive examples** or **positive instances** of the concept. Examples for which $f(\mathbf{x}) = 0$ are called **negative examples** or **negative instances**.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in \{1, \ldots, K\}$ are called the classes or class labels.
- **Hypothesis Space**. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

Key Issues in Machine Learning

• What are good hypothesis spaces?

Which spaces have been useful in practical applications and why?

- What algorithms can work with these spaces? Are there general design principles for machine learning algorithms?
- How can we optimize accuracy on future data points? This is sometimes called the "problem of overfitting".
- How can we have confidence in the results? How much training data is required to find accurate hypotheses? (the *statistical question*)
- Are some learning problems computationally intractable? (the *computational question*)
- How can we formulate application problems as machine learning problems? (the *engineering question*)

A Framework for Hypothesis Spaces

- Size. Does the hypothesis space have a fixed size or variable size? Fixed-size spaces are easier to understand, but variable-size spaces are generally more useful. Variable-size spaces introduce the problem of overfitting.
- Randomness. Is each hypothesis deterministic or stochastic? This affects how we evaluate hypotheses. With a deterministic hypothesis, a training example is either *consistent* (correctly predicted) or *inconsistent* (incorrectly predicted). With a stochastic hypothesis, a training example is *more likely* or *less likely*.
- **Parameterization**. Is each hypothesis described by a set of **symbolic** (discrete) choices or is it described by a set of **continuous** parameters? If both are required, we say the hypothesis space has a **mixed** parameterization.

Discrete parameters must be found by combinatorial search methods; continuous parameters can be found by numerical search methods.

A Framework for Learning Algorithms

• Search Procedure.

Direction Computation: solve for the hypothesis directly.

Local Search: start with an initial hypothesis, make small improvements until a local optimum.

Constructive Search: start with an empty hypothesis, gradually add structure to it until local optimum.

• Timing.

Eager: Analyze the training data and construct an explicit hypothesis. **Lazy:** Store the training data and wait until a test data point is presented, then construct an ad hoc hypothesis to classify that one data point.

Online vs. Batch. (for eager algorithms)
Online: Analyze each training example as it is presented.
Batch: Collect training examples, analyze them, output an hypothesis.