

Today – Bayesian networks

- One of the most exciting advancements in statistical AI in the last decades
- Generalizes naïve Bayes and logistic regression classifiers
- Compact representation for exponentially-large probability distributions
- Exploit conditional independencies

©Carlos Guestrin 2005-2013

Marginally independent random variables

- Sets of variables X, Y ______ (ntils
- X is independent of Y if
 - $\Box P \vdash (\mathbf{X} = \mathbf{x} \perp \mathbf{Y} = \mathbf{y}), \ \forall \mathbf{x} \in Val(\mathbf{X}), \ \mathbf{y} \in Val(\mathbf{Y})$ $P(\mathbf{y} = \mathbf{y}, \mathbf{y} = \mathbf{y}) \vdash P(\mathbf{y} = \mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y}$
- Shorthand:
 - \square Marginal independence: $P \vdash (X \perp Y)$
- Proposition: P statisfies (X \(\text{Y} \) if and only if

©Carlos Guestrin 2005-201

15

Conditional independence

- Flu and Headache are not (marginally) independent

 P(H=+ | F=+|)

 P(H=+)

 P(H=+)

 F

 H
- Flu and Headache are independent given Sinus infection F → H | S

$$P(H=t\mid S=t) = P(H=t\mid S=t, F=t)$$

• More Generally: $\begin{array}{c} \chi \perp \gamma \mid \overline{Z} \\ \rho(\chi \mid \overline{Z}) = \rho(\chi \mid \gamma, \overline{Z}) \\ \emptyset \\ \rho(\chi, \gamma \mid \overline{Z}) = \rho(\chi \mid \overline{Z}) \rho(\gamma \mid \overline{Z}) \end{array}$

16

Conditionally independent random variables

- Sets of variables X, Y, Z
- X is independent of Y given Z if
 - $\square P \vdash (X=x\perp Y=y|Z=z), \forall x\in Val(X), y\in Val(Y), z\in Val(Z)$
- Shorthand:
 - \square Conditional independence: $P \vdash (X \perp Y \mid Z)$
 - \square For $P \vdash (\mathbf{X} \perp \mathbf{Y} \mid \varnothing)$, write $P \vdash (\mathbf{X} \perp \mathbf{Y})$
- Proposition: P statisfies (X ⊥ Y | Z) if and only if
 - $\square P(X,Y|Z) = P(X|Z) P(Y|Z)$

©Carlos Guestrin 2005-2013

17

