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Webpage classification 2

Today — Bayesian networks
" JEE
m One of the most exciting advancements in
statistical Al in the last decades

m Generalizes naive Bayes and logistic regression
classifiers

m Compact representation for exponentially-large
probability distributions

m Exploit conditional independencies
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Causal structure
" JEE
m Suppose we know the following:
The flu causes sinus inflammation
Allergies cause sinus inflammation

Sinus inflammation causes a runny nose
Sinus inflammation causes headaches

m How are these connected?
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Possible queries
" JEE

@ m Inference
m Most probable
@ explanation
m Active data

collection
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Car starts BN
" JEE
m 18 binary attributes
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Q ? m 28 terms, why so fast?
UelPunp " m Not impressed?
Dggbutor HailFinder BN — more than 3% =

SpsPlugs 58149737003040059690390169 terms

Factored joint distribution -

. Preview
JE——
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What about probabilities?

_ Conditional grobability tables (CPTs)

=

Number of parameters
" JEE

=




Key: Independence assumptions
" JEE

Knowing sinus separates the variables from each other
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(Marginal) Independence
" JEE
m Flu and Allergy are (marginally) independent

Flu=t

Flu=f

Allergy =t

Allergy = f

Flu=t Flu=f

Allergy =t

Allergy = f
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Marginally independent random

. varigglgg
m Sets of variables X, Y

m X is independent of Y if
P F (X=xLY=y), Vx&Val(X), yeVal(Y)

m Shorthand:
Marginal independence: PF (X LY)

m Proposition: P statisfies (X L Y) if and only if
P(X.,Y) = P(X) P(Y)

Conditional independence
" JEE
m Flu and Headache are not (marginally) independent

m Flu and Headache are independent given Sinus
infection

m More Generally:




Conditionally independent random

. varigglgg
m Sets of variables X, Y, Z

m X is independent of Y given Z if
P F (X=xLY=y|Z=2z), Vx&Val(X), yeVal(Y), z&Val(Z)

m Shorthand:

Conditional independence: PF (X LY | Z)
ForPF(XLY|JD), writePF(XLY)

m Proposition: P statisfies (X L Y | Z) if and only if
P(X.,Y|Z) = P(X|Z) P(Y|Z)
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The independence assumption
" JEE

==

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents




Local Markov Assumption:

EXpIaining dWay |Avariable X is independent

of its non-descendants given
its parents
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Naive Bayes revisited
" JEE—

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Joint distribution
= JEEE

==

Why can we decompose? Markov Assumption!

The chain rule of probabilities
" JEE
m P(A,B) = P(A)P(B|A)

g

m More generally:
P(Xy,...X,) = P(X) POXS,IXY) ..o POXGIX -0 X 1)
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Chain rule & Joint distribution
" Loca.l Marko_v Assumption:

A variable X is independent

@ @ of its non-descendants given
its parents

The Representation Theorem —
omt Distribution to BN

BN: O\?(’O Encodes independence
assumptions

g O

_If conditional Joint probability
independencies distribution:
in BN are subset of n

rex P(X1,..., Xn) = [[ P(X;|Pay,
conditional ! g ( x)

independencies in P
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Two (trivial) special cases
* JEE

Edgeless graph Fully-connected
graph

Bayesian Networks —
(Structure) Learning

Machine Learning — CSE546
Carlos Guestrin
University of Washington

November 25,32013
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Review
" B

m Bayesian Networks

Compact representation for
probability distributions

Exponential reduction in number of
parameters

m Fast probabilistic inference
As shown in demo examples
Compute P(X|e)

m Today
Learn BN structure
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Learning Bayes nets

@ CPTs —
| P(Xi| Pay;)
structure

parameters
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Learning the CPTs
" S

@ A For each discrete variable X;

COUﬂt(Xi = mi,Xj = :)3]‘)
Count(X; = z;)
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Information-theoretic interpretation

. .of maximum likelihood 1 <D\/.

m Given structure, log likelihood of data:
log P(D | 0g,9)
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Information-theoretic interpretation
. Slmaximum likelihood 2 ®\
m Given structure, log likelihood of data:

log P(D | 6g,G) = 3 > log P (X,» =2 | Pay, = x@ [aniD
j=1i=1

Information-theoretic interpretation

. .of maximum likelihood 3 ®\/.

m Given structure, log likelihood of data:

log P(D ‘ 0, g) = mz Z P(IZ, Pa%g) log P(xz ‘ Pa%g)

i mivPawi,g
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Decomposable score
* JEE
m Log data likelihood
log p(D | 0, g) = me(XZ, PaXi’Q)—mZ FI(XZ)

m Decomposable score:
Decomposes over families in BN (node and its parents)
Will lead to significant computational efficiency!!!
Score(G : D) = ¥, FamScore(X|Pay; : D)
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How many trees are there?

- JNonetheIess — Efficient optimal algorithm finds best tree
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Scoring a tree 1: equivalent trees

oSG P(D | 6,6) =m > 1(X; Pay,g)—m> H(X;)

Scoring a tree 2: similar trees

log p(D | 0, g) = mz f(XZ, PaXi,g)—mZ FI(XZ)
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Chow-Liu tree learning algorithm 1

“ JE
m For each pair of variables X;,X;

Compute empirical distribution:

~ Count(z;, x;
P(zi,x;) = Countli, ;)

m
Compute mutual information: p( )
- - P(x;, x;
I(X;, X)) = P(xz;,z:)log ——— 277 _
v a:lz;] v P(z;)P(x;)
m Define a graph
Nodes X;,...,X, -
Edge (i,j) gets weight /(Xi, X;)
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m Optimal tree BN

Compute maximum weight
spanning tree

Directions in BN: pick any
node as root, breadth-first-
search defines directions
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Chow-Liu tree learning algorithm 2
| "Og ]5(1) ’ 0,g) = me(XZ,PaX“g)—mZH(XZ)

38
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Structure learning for general graphs
" S
m In a tree, a node only has one parent

m Theorem:

The problem of learning a BN structure with at most d
parents is NP-hard for any (fixed) d>1

m Most structure learning approaches use heuristics
(Quickly) Describe the two simplest heuristic
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Learn BN structure using local

QL

i Local search, Score using BIC
Starting from X '
Chow-Liu tree possible moves:
* Add edge
* Delete edge
* Invert edge
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Learn Graphical Model Structure

. using LASSO <D\

m Graph structure is about selecting parents:

m If no independence assumptions, then CPTs depend on all parents:

m  With independence assumptions, depend on key variables:

m One approach for structure learning, sparse logistic regression!
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What you need to know about

B} Iﬁarning BN structures

m Decomposable scores
Maximum likelihood
Information theoretic interpretation

m Best tree (Chow-Liu)
m Beyond tree-like models is NP-hard

m Use heuristics, such as:
Local search
LASSO
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