Other application of EM

Marco Tulio Ribeiro

November 12th, 2013

Layout

EM for binomial

 Source: "What is the expectation maximization algorithm", Do and Batzoglou

- Source: "What is the expectation maximization algorithm", Do and Batzoglou
- Setting:
 - Two coins, A and B
 - Land on heads with $P = \theta_A, \theta_B$.

- Source: "What is the expectation maximization algorithm", Do and Batzoglou
- Setting:
 - Two coins, A and B
 - ▶ Land on heads with $P = \theta_A, \theta_B$.
 - Choose one coin at random (50%), perform 10 tosses, record results

- Source: "What is the expectation maximization algorithm", Do and Batzoglou
- Setting:
 - Two coins, A and B
 - ▶ Land on heads with $P = \theta_A, \theta_B$.
 - Choose one coin at random (50%), perform 10 tosses, record results
 - Do this five times.

Formality

- z=1 means coin A was chosen.
- Let $y_i \in Y$ be the number of heads in the sequence.
- For a single sequence of 10 tosses:

$$P(y_i, z | \theta) = \begin{cases} .5 * \binom{10}{y_i} \theta_A^{y_i} (1 - \theta_A)^{10 - y_i} & \text{if } z = 1\\ .5 * \binom{10}{y_i} \theta_B^{y_i} (1 - \theta_B)^{10 - y_i} & \text{if } z = 0 \end{cases}$$
 (1)

If we knew z...

$$L(\theta|Y,z) = \prod_{i=1}^{5} (.5 * {10 \choose y_i} \theta_A^{y_i} (1 - \theta_A)^{10 - y_i})^{z_i} *$$
$$(.5 * {10 \choose y_i} \theta_B^{y_i} (1 - \theta_B)^{10 - y_i})^{1 - z_i}$$

If we knew z...

Ignoring the binomial term:

$$\begin{split} l(\theta|Y,z) &= \\ \sum_{i=1}^{5} z_i (log(.5) + y_i log(\theta_A) + (10 - y_i) log(1 - \theta_A)) + \\ (1 - z_i) (log(.5) + y_i log(\theta_B) + (10 - y_i) log(1 - \theta_B)) \end{split}$$

$$\hat{\theta_A} = \frac{\sum_{i=1}^5 z_i y_i}{10 \sum_{i=1}^5 z_i}$$

$$\hat{\theta_A} = \frac{\sum_{i=1}^5 z_i y_i}{10 \sum_{i=1}^5 z_i}$$

$$\hat{\theta_B} =$$

$$\hat{\theta_A} = \frac{\sum_{i=1}^5 z_i y_i}{10 \sum_{i=1}^5 z_i}$$

$$\hat{\theta_B} = \frac{\sum_{i=1}^5 (1-z_i)y_i}{10\sum_{i=1}^5 (1-z_i)}$$

Sure enough

a Maximum likelihood

5	sets,	10	tosses	per	se

Coin A	Coin B		
	5 H, 5 T		
9 H, 1 T			
8 H, 2 T			
	4 H, 6 T		
7 H, 3 T			
24 H, 6 T	9 H, 11 T		

$$\hat{\theta}_{A} = \frac{24}{24 + 6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9 + 11} = 0.45$$

We don't have z, though.

Marginalizing Z out:

$$L(\theta|Y) = \prod_{i=1}^{5} \sum_{z \in (0,1)} P(y_i, z_i|\theta)$$

We don't have z, though.

Marginalizing Z out:

$$L(\theta|Y) = \prod_{i=1}^{5} \sum_{z \in (0,1)} P(y_i, z_i|\theta)$$

Which is equal to:

$$\prod_{i=1}^{5} .5 * \left(\binom{10}{y_i} \theta_A^{y_i} (1 - \theta_A)^{10 - y_i} \right) + \\ .5 * \left(\binom{10}{y_i} \theta_B^{y_i} (1 - \theta_B)^{10 - y_i} \right)$$

Enter EM

This function is usually hard to optimize

Enter EM

- This function is usually hard to optimize
- So we'll use EM.

Enter EM

- This function is usually hard to optimize
- So we'll use EM.
- Intuition: make z a random variable and take its expected value (given a current θ as truth.
- ▶ Then optimize over θ , and repeat.

Let's reason about *z*

$$P(z|Y,\theta) = \prod_{i=1}^{5} P(z_{i}|y_{i},\theta) = \prod_{i=1}^{5} \frac{P(y_{i},z_{i}|\theta)}{P(y_{i}|\theta)}$$

Let's reason about z

•

$$P(z|Y,\theta) = \prod_{i=1}^{5} P(z_i|y_i,\theta) = \prod_{i=1}^{5} \frac{P(y_i,z_i|\theta)}{P(y_i|\theta)}$$

Since we don't know z, let's leave it as a random variable and take its expected value

Let's reason about z

Þ

$$P(z|Y,\theta) = \prod_{i=1}^{5} P(z_i|y_i,\theta) = \prod_{i=1}^{5} \frac{P(y_i,z_i|\theta)}{P(y_i|\theta)}$$

- Since we don't know z, let's leave it as a random variable and take its expected value
- We'll calculate the expected value of the log-likelihood leaving everything fixed but z. This is step one of EM.

New log likelihood

.

$$\begin{split} E[l(\theta|Y,Z)|Y=y,\theta_{0}] = \\ \sum_{i=1}^{5} E[z_{i}|Y_{i}=y_{i},\theta_{0}](log(.5)+y_{i}log(\theta_{A})+(10-y_{i})log(1-\theta_{A})) + \\ E[(1-z_{i})|Y_{i}=y_{i},\theta_{0}](log(.5)+y_{i}log(\theta_{B})+(10-y_{i})log(1-\theta_{B})) \end{split}$$

Note that I substituted z_i for $E[z_i|Y_i=y_i,\theta_0]$.

New log likelihood

.

$$\begin{split} E[l(\theta|Y,Z)|Y &= y, \theta_0] = \\ \sum_{i=1}^{5} E[z_i|Y_i &= y_i, \theta_0](log(.5) + y_i log(\theta_A) + (10 - y_i)log(1 - \theta_A)) + \\ E[(1 - z_i)|Y_i &= y_i, \theta_0](log(.5) + y_i log(\theta_B) + (10 - y_i)log(1 - \theta_B)) \end{split}$$

- ▶ Note that I substituted z_i for $E[z_i|Y_i=y_i,\theta_0]$.
- Only z is random, so I was able to push the expectation inside.

What's $E[z_i|Y_i=y_i,\theta_0]$?

 $ightharpoonup z_i$ is a binary random variable, so

$$\begin{aligned} E[z_i|Y_i = y_i, \theta_0] &= P(z_i = 1|Y_i = y_i, \theta_0) = \\ \frac{P(z_i = 1, Y_i = y_i|\theta_0)}{P(z_i = 1, Y_i = y_i|\theta_0) + P(z_i = 0, Y_i = y_i|\theta_0)} &= \\ \frac{.5 * \theta_{0A}^{y_i} (1 - \theta_{0A})^{10 - y_i}}{.5 * \theta_{0A}^{y_i} (1 - \theta_{0A})^{10 - y_i} + .5 * \theta_{0B}^{y_i} (1 - \theta_{0B})^{10 - y_i}} \end{aligned}$$

I ommited the binomial terms.

Step one: Expectation

- Since we know $E[z_i|Y_i=y_i,\theta_0]$ we can calculate $E[l(\theta|Y=y,\theta_0)]$ for arbitrary θ values.
- Let's denote:

$$Q(\theta|\theta_0, Y) = E[l(\theta|Y = y, \theta_0)]$$

- In step two, we find the value of θ that maximizes $Q(\theta|\theta_0,Y)$
- Let $E[z_i|Y_i=y_i,\theta_0]=E(z_i)$. MLE becomes:
 - $\hat{\theta_A} =$

- In step two, we find the value of θ that maximizes $Q(\theta|\theta_0,Y)$
- Let $E[z_i|Y_i=y_i,\theta_0]=E(z_i)$. MLE becomes:
 - $\hat{\theta_A} = \frac{\sum_{i=1}^5 E(z_i) y_i}{10 \sum_{i=1}^5 E(z_i)}$

- In step two, we find the value of θ that maximizes $Q(\theta|\theta_0,Y)$
- Let $E[z_i|Y_i=y_i,\theta_0]=E(z_i)$. MLE becomes:
 - $\hat{\theta_A} = \frac{\sum_{i=1}^5 E(z_i) y_i}{10 \sum_{i=1}^5 E(z_i)}$
 - $\hat{\theta_B} =$

- In step two, we find the value of θ that maximizes $Q(\theta|\theta_0,Y)$
- Let $E[z_i|Y_i=y_i,\theta_0]=E(z_i)$. MLE becomes:

$$\hat{\theta_A} = \frac{\sum_{i=1}^5 E(z_i) y_i}{10 \sum_{i=1}^5 E(z_i)}$$

$$\hat{\theta_B} = \frac{\sum_{i=1}^{5} (1 - E(z_i)) y_i}{10 \sum_{i=1}^{5} (1 - E(z_i))}$$

Going back to the example

▶ They begin with $\theta_A = .6, \theta_B = .5$

- ▶ They begin with $\theta_A = .6, \theta_B = .5$
- Y = (5, 9, 8, 4, 7)

- ▶ They begin with $\theta_A = .6, \theta_B = .5$
- Y = (5, 9, 8, 4, 7)
- ► This yieds $E[z|Y, \theta_0] = (0.44914893, 0.80498552, 0.73346716, 0.35215613, 0.64721512)$

- ▶ They begin with $\theta_A = .6, \theta_B = .5$
- Y = (5, 9, 8, 4, 7)
- ► This yieds $E[z|Y, \theta_0] = (0.44914893, 0.80498552, 0.73346716, 0.35215613, 0.64721512)$
- What does this mean?

Python code

```
def main():
  Y = np.array([5, 9, 8, 4, 7])
  theta_hat = np.array([.6, .5])
  previous = theta_hat.copy()
  pi = np.array([.5, .5])
  while True:
    # E-step
    pzi1 = pi[0] * theta_hat[0] ** Y * (1 - theta_hat[0]) ** (10 - Y)
    pzi0 = pi[1] * theta_hat[1] ** Y * (1 - theta_hat[1]) ** (10 - Y)
    ezk = pzi1 / (pzi0 + pzi1)
    # M - step
    theta_hat[0] = sum(ezk * Y) / (10 * sum(ezk))
    theta_hat[1] = sum((1 - ezk) * Y) / (10 * sum((1 - ezk)))
    # print ezk
    # print theta_hat
    if (theta_hat == previous).all():
      break
    previous = theta_hat.copy()
  print theta_hat
```

• Output: $\hat{\theta_A} = 0.79678907, \hat{\theta_B} = 0.51958312$

What happens if π is not (.5, .5)?

$$E[l(\theta|Y,Z)|Y=y,\theta_{0}] = \sum_{i=1}^{5} E[z_{i}|Y_{i}=y_{i},\theta_{0}](log(\pi_{0})+y_{i}log(\theta_{A})+(10-y_{i})log(1-\theta_{A}))+ \\ E[(1-z_{i})|Y_{i}=y_{i},\theta_{0}](log(1-\pi_{0})+y_{i}log(\theta_{B})+(10-y_{i})log(1-\theta_{B}))$$

What happens if π is not (.5, .5)?

$$\begin{split} E[l(\theta|Y,Z)|Y &= y, \theta_0] = \\ \sum_{i=1}^5 E[z_i|Y_i &= y_i, \theta_0](log(\pi_0) + y_ilog(\theta_A) + (10 - y_i)log(1 - \theta_A)) + \\ E[(1 - z_i)|Y_i &= y_i, \theta_0](log(1 - \pi_0) + y_ilog(\theta_B) + (10 - y_i)log(1 - \theta_B)) \end{split}$$

$$\begin{split} E[z_i|Y_i = y_i, \theta_0] &= P(z_i = 1|Y_i = y_i, \theta_0) = \\ \frac{\pi_0 * \theta_{0A}^{y_i} (1 - \theta_{0A})^{10 - y_i}}{\pi_0 * \theta_{0A}^{y_i} (1 - \theta_{0A})^{10 - y_i} + (1 - \pi_0) * \theta_{0B}^{y_i} (1 - \theta_{0B})^{10 - y_i}} \end{split}$$

• What's the MLE for π_0 when we know the labels z?

- What's the MLE for π_0 when we know the labels z?
- $\hat{\pi_0} = \frac{\sum_{i=1}^5 z_i}{5}$

• What's the MLE for π_0 when we know the labels z?

$$\hat{\pi_0} = \frac{\sum_{i=1}^5 z_i}{5}$$

And when we don't know the labels?

• What's the MLE for π_0 when we know the labels z?

$$\hat{\pi_0} = \frac{\sum_{i=1}^5 z_i}{5}$$

And when we don't know the labels?

$$\hat{\pi_0} = \frac{\sum_{i=1}^5 E(z_i)}{5}$$

• What's the MLE for π_0 when we know the labels z?

$$\hat{\pi_0} = \frac{\sum_{i=1}^5 z_i}{5}$$

And when we don't know the labels?

$$\hat{\pi_0} = \frac{\sum_{i=1}^5 E(z_i)}{5}$$