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Seting

I Source: “What is the expectation
maximization algorithm”, Do and Batzoglou

I Setting:
I Two coins, A and B

I Land on heads with P = θA, θB.
I Choose one coin at random (50%), perform

10 tosses, record results
I Do this five times.
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Formality

I z = 1 means coin A was chosen.
I Let yi ∈ Y be the number of heads in the sequence.
I For a single sequence of 10 tosses:

P (yi, z|θ) =
{
.5 ∗

(
10
yi

)
θyiA(1− θA)10−yi if z = 1

.5 ∗
(
10
yi

)
θyiB(1− θB)10−yi if z = 0

(1)
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If we knew z...

I

L(θ|Y, z) =
5∏

i=1

(.5 ∗
(
10

yi

)
θyiA(1− θA)10−yi)zi∗

(.5 ∗
(
10

yi

)
θyiB(1− θB)10−yi)1−zi

6



If we knew z...

I Ignoring the binomial term:
I

l(θ|Y, z) =
5∑

i=1

zi(log(.5) + yilog(θA) + (10− yi)log(1− θA))+

(1− zi)(log(.5) + yilog(θB) + (10− yi)log(1− θB))
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MLE with we knew z.

I θ̂A =

∑5
i=1 ziyi

10
∑5

i=1 zi

I θ̂B =
∑5

i=1 (1−zi)yi
10
∑5

i=1 (1−zi)
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Sure enough
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We don’t have z, though.

I Marginalizing Z out:

L(θ|Y ) =
5∏

i=1

∑
z∈(0,1)

P (yi, zi|θ)

I Which is equal to:
5∏

i=1

.5 ∗ (
(
10

yi

)
θyiA(1− θA)10−yi)+

.5 ∗ (
(
10

yi

)
θyiB(1− θB)10−yi)
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Enter EM

I This function is usually hard to optimize

I So we’ll use EM.
I Intuition: make z a random variable and

take its expected value (given a current θ
as truth.

I Then optimize over θ, and repeat.
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Let’s reason about z

I

P (z|Y, θ) =
5∏

i=1

P (zi|yi, θ) =
5∏

i=1

P (yi, zi|θ)
P (yi|θ)

I Since we don’t know z, let’s leave it as a
random variable and take its expected
value

I We’ll calculate the expected value of the
log-likelihood leaving everything fixed but z.
This is step one of EM.
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New log likelihood
I

E[l(θ|Y, Z)|Y = y, θ0] =
5∑

i=1

E[zi|Yi = yi, θ0](log(.5) + yilog(θA) + (10− yi)log(1− θA))+

E[(1− zi)|Yi = yi, θ0](log(.5) + yilog(θB) + (10− yi)log(1− θB))

I Note that I substituted zi for E[zi|Yi = yi, θ0].

I Only z is random, so I was able to push the expectation inside.
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What’s E[zi|Yi = yi, θ0]?

I zi is a binary random variable, so

E[zi|Yi = yi, θ0] = P (zi = 1|Yi = yi, θ0) =
P (zi = 1, Yi = yi|θ0)

P (zi = 1, Yi = yi|θ0) + P (zi = 0, Yi = yi|θ0)
=

.5 ∗ θyi0A(1− θ0A)10−yi
.5 ∗ θyi0A(1− θ0A)10−yi + .5 ∗ θyi0B(1− θ0B)10−yi

I I ommited the binomial terms.
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Step one: Expectation

I Since we know E[zi|Yi = yi, θ0] we can calculate
E[l(θ|Y = y, θ0)] for arbitrary θ values.

I Let’s denote:

Q(θ|θ0, Y ) = E[l(θ|Y = y, θ0)]
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Step two: maximization

I In step two, we find the value of θ that
maximizes Q(θ|θ0, Y )

I Let E[zi|Yi = yi, θ0] = E(zi). MLE
becomes:

I θ̂A =

∑5
i=1 E(zi)yi

10
∑5

i=1 E(zi)

I θ̂B =
∑5

i=1 (1−E(zi))yi

10
∑5

i=1 (1−E(zi))
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Going back to the example
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Doing one iteration

I They begin with θA = .6, θB = .5

I Y = (5, 9, 8, 4, 7)

I This yieds
E[z|Y, θ0] = (0.44914893, 0.80498552,
0.73346716, 0.35215613, 0.64721512)

I What does this mean?
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Python code

I Output: θ̂A = 0.79678907, θ̂B = 0.51958312
19



What happens if π is not (.5, .5)?
I

E[l(θ|Y, Z)|Y = y, θ0] =
5∑

i=1

E[zi|Yi = yi, θ0](log(π0) + yilog(θA) + (10− yi)log(1− θA))+

E[(1− zi)|Yi = yi, θ0](log(1− π0) + yilog(θB) + (10− yi)log(1− θB))

I

E[zi|Yi = yi, θ0] = P (zi = 1|Yi = yi, θ0) =

π0 ∗ θyi0A(1− θ0A)10−yi
π0 ∗ θyi0A(1− θ0A)10−yi + (1− π0) ∗ θyi0B(1− θ0B)10−yi
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Reasoning about π

I What’s the MLE for π0 when we know the
labels z?

I π̂0 =
∑5

i=1 zi
5

I And when we don’t know the labels?

I π̂0 =
∑5

i=1E(zi)

5
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