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. Sigmoid
» Overfitting
 Gradient Descent



The Sigmoid

T 1+ exp(wx)

* Suppose there Is no intercept, and w =
1,3,9

* Which graphs correspond to which w?
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Linear Decision Boundary

* (X,y) points are classified by which side of
the decision boundary they are on

» Decision boundary (red lines): wotw- -z =0
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Overfitting In Logistic

Regression
* Why will we overfit these data?




Overfitted Model with
Linearly Separable Data

» Model should theoretically be a step function, but the
package | am using prevents this



Why does linear separabillity

cause overfitting?

 Logistic regression's objective function, conditional
likelihood, is maximized if every point is classified
correctly:

Pr(y;|xi,w,wg) =1,2=1,...,n

1
1 + exp(wy + w - x;)

Pr(yz — O‘xiaw7w0) —

» Possible if and only if linearly separable data

e exp(wo +w - ) must be 0 or infinity, so w0 and/or w
are infinite

» Creates 0-1 step function with step at wo +w -2 =0



Regularized Model with
Linearly Separable Data




Unregularized Model on
Non-Linearly Separable Data




Gradient Descent

« How can we optimize a convex function
f(w) If there is no closed form solution to

Vwf(w) =0
* Logistic regression objective has this
problem (but concave)

* Must use numerical approximation
algorithm such as gradient descent



Update Rule

« Update estimate by subtracting gradient evaluated at
that point (with step size parameter )

WD gy ® Oy (™)

IIIIIIIIIIIIIIIIIII

e Let w™ be argmin of optimum

« In dimension k, if estimate is Wx < Wy, the derivative is
negative, so subtracting it increases wx

« If wy > wy,, subtracting derivative decreases wx



Gradient Descent for Linear

Regression

* Linear regression has convex objective,
mean-squared error, So we can use gradient
descent

1

e MSE: f(w)= E(Y — Xw)' (Y — Xw)
* Update rule for GD:
WD p® _op® L xT(x0,® _y)
n

» Update rule for SGD replaces mean over all
points with only one point (z: Is a 1xd vector for
the t-th point):

WD p® — 2p® T (@ — )



Linear Regression Update

Rule Derivation

* For regular gradient descent,

WD oy Y F (D)
1
flw) = —(¥ = Xw)" (Y — Xw)

Vuf(w) = 2%(—XT)(Y — Xw) = Z%XT(Xw ~Y)

e In dimension |, J :21 - At —
awj f(UJ) n ; 'CC'L] (CCZ'LU y’b)

* For stochastic gradient descent, replace this sum/mean with a single point

2@ (Trw — Yy )

 |n matrix form with all dimensions,

Qxf(a:tw =
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