10-701 Midterm Exam, Fall 2007

. Personal info:

e Name:
e Andrew account:

e E-mail address:
. There should be 17 numbered pages in this exam (including this cover sheet).

. You can use any material you brought: any book, class notes, your print outs of class
materials that are on the class website, including my annotated slides and relevant
readings, and Andrew Moore’s tutorials. You cannot use materials brought by other
students. Calculators are not necessary. Laptops, PDAs, phones and Internet access
are not allowed.

. If you need more room to work out your answer to a question, use the back of the page
and clearly mark on the front of the page if we are to look at what’s on the back.

. Work efficiently. Some questions are easier, some more difficult. Be sure to give yourself
time to answer all of the easy ones, and avoid getting bogged down in the more difficult
ones before you have answered the easier ones.

. Note there are extra-credit sub-questions. The grade curve will be made without
considering students’ extra credit points. The extra credit will then be used to try to
bump your grade up without affecting anyone else’s grade.

. You have 80 minutes.

. Good luck!
’ Question ‘ Topic Max. score ‘ Score ‘
1 Short questions 20 + 0.1010 extra
2 Loss Functions 12
3 Kernel Regression 12
4 Model Selection 14
5 Support Vector Machine 12
6 Decision Trees and Ensemble Methods | 30




1 [20 Points| Short Questions

The following short questions should be answered with at most two sentences, and/or a
picture. For yes/no questions, make sure to provide a short justification.

1. [2 point] Does a 2-class Gaussian Naive Bayes classifier with parameters i1, o1, ok,
o9, for attributes k = 1, ..., m have exactly the same representational power as logistic
regression (i.e., a linear decision boundary), given no assumptions about the variance
values 027

2. [2 points| For linearly separable data, can a small slack penalty (“C”) hurt the training
accuracy when using a linear SVM (no kernel)? If so, explain how. If not, why not?

3. [3 points] Consider running AdaBoost with Multinomial Naive Bayes as the weak
learner for two classes and k binary features. After t iterations, of AdaBoost, how
many parameters do you need to remember? In other words, how many numbers do
you need to keep around to predict the label of a new example? Assume that the
weak-learner training error is non-zero at iteration ¢. Don’t forget to mention where
the parameters come from.

4. [2 points| In boosting, would you stop the iteration if the following happens? Justify
your answer with at most two sentences each question.

e The error rate of the combined classifier on the original training data is 0.



e The error rate of the current weak classifier on the weighted training data is 0.

5. [4 points] Given n linearly independent feature vectors in n dimensions, show that
for any assignment to the binary labels you can always construct a linear classifier
with weight vector w which separates the points. Assume that the classifier has the
form sign(w - x). Note that a square matrix composed of linearly independent rows is
invertible.

6. [3 points] Construct a one dimensional classification dataset for which the Leave-one-
out cross validation error of the One Nearest Neighbors algorithm is always 1. Stated
another way, the One Nearest Neighbor algorithm never correctly predicts the held out
point.

7. [2 points] Would we expect that running AdaBoost using the ID3 decision tree learning
algorithm (without pruning) as the weak learning algorithm would have a better true
error rate than running ID3 alone (i.e., without boosting (also without pruning))?
Explain.



8.

9.

10.

[1 point] Suppose there is a coin with unknown bias p. Does there exist some value of p
for which we would expect the maximum a-posteriori estimate of p, using a Beta(4, 2)
prior, to require more coin flips before it is close to the true value of p, compared to
the number of flips required of the maximum likelihood estimate of p? Explain.

(The Beta(4,2) distribution is given in the figure below.)
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Figure 1: Beta(4,2) distribution

[1 point] Suppose there is a coin with unknown bias p. Does there exist some value
of p for which we would expect the maximum a-posteriori estimate of p, using a
Uniform([0,1]) prior, to require more coin flips before it is close to the true value
of p, compared to the number of flips required of the maximum likelihood estimate of

p? Explain.

[0.1010 extra credit] Can a linear classifier separate the positive from the negative
examples in the dataset below? Justify.
Colbert U2
for Loosing my religion
president gmy g

The Beatles
There is a season...
Turn! Turn! Turn!

Nirvana
Grunge



2 [12 points] Loss Function

Generally speaking, a classifier can be written as H(x) = sign(F(z)), where H(z) : R —
{—1,1} and F(z) : R — R. To obtain the parameters in F'(z), we need to minimize the
loss function averaged over the training set: y_, L(y'F(z")). Here L is a function of yF(z).
For example, for linear classifiers, F'(z) = wq + Z?Zl w;x;, and yF(z) = y(wo + Z?:l w;x;)

1. [4 points] Which loss functions below are appropriate to use in classification? For the
ones that are not appropriate, explain why not. In general, what conditions does L
have to satisfy in order to be an appropriate loss function? The x axis is yF(x), and
the y axis is L(yF(x)).
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2. [4 points] Of the above loss functions appropriate to use in classification, which one is
the most robust to outliers? Justify your answer.

. d

3. [4 points] Let F(z) = wo + 32 wiz; and L(yF(2)) = mopimmmn yF . Suppose you use
gradient descent to obtain the optimal parameters wo and w;. 1ve the update rules
for these parameters.



3 [12 points] Kernel Regression, k-NN

1. [4 points| Sketch the fit Y given X for the dataset given below using kernel regression
with a box kernel

0 otherwise

for h = 0.5, 2.
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2. [4 points| Sketch or describe a dataset where kernel regression with the box kernel
above with h = 0.5 gives the same regression values as 1-NN but not as 2-NN in the
domain x € [0, 6] below.

4.5¢ b

3.5f b

2.5¢ b

1.5¢ b

3. [4 points| Sketch or describe a dataset where kernel regression with the box kernel
above with h = 0.5 gives the same regression values as 2-NN but not as 1-NN in the
domain z € (0,6) below.

4.5¢ b

2.5¢ b

0.5r b




4 [14 Points] Model Selection

A central theme in machine learning is model selection. In this problem you will have the
opportunity to demonstrate your understanding of various model selection techniques and
their consequences. To make things more concrete we will consider the dataset D given in 77
consisting of n independent identically distributed observations. The features of D consist
of pairs (2%, %) € R? and the observations y* € R are continuous valued.

D = {((z1,23),9"), ((¢1,23), 4°). ..., (], 23), y")} (1)

Consider the abstract model given ?7. The function fy, g, is a mapping from the features in
R? to an observation in R! which depends on two parameters 8; and 6. The €' correspond
to the noise. Here we will assume that the ¢ ~ N(0,0?) are independent Gaussians with

zero mean and variance o2.

yi = f01,92(xiaxé) + Ei (2)

1. [4 Points] Show that the log likelihood of the data given the parameters is equal to ?7.

n

U(D; 61,0) = (' = fon0.(a%,28))? = nlog (V2ro) (3)

202 ¢

=1
Recall the probability density function of the N(u,0?) Gaussian distribution is given
by ?7?.

plo) = e (-0 (@)



2. [1 Point] If we disregard the parts that do not depend on fy, 9, and Y the negative of
the log-likelihood given in 77 is equivalent to what commonly used loss function?

3. [2 Points| Many common techniques used to find the maximum likelihood estimates of
0, and 6, rely on our ability to compute the gradient of the log-likelihood. Compute
the gradient of the log likelihood with respect to #; and 6. Express you answer in

terms of:

yz7 f91,62<mzlax12)7 8—91f91792(?[311,$12>, 8_92]091,92(1‘11?%%)

4. [2 Points] Given the learning rate 1, what update rule would you use in gradient descent
to maximize the likelihood.

10



5. [3 Points| Suppose you are given some function h such that h(6,6,) € R is large when
fo. 0, 1s complicated and small when fy, ¢, is simple. Use the function h along with
the negative log-likelihood to write down an expression for the regularized loss with

parameter \.

6. [2 Points] For small and large values of A describe the bias variance trade off with
respect to the regularized loss provided in the previous part.

11



5 [12 points] Support Vector Machine

1. [2 points] Suppose we are using a linear SVM (i.e., no kernel), with some large C value,
and are given the following data set.

R 27

+ + +
+
|

Draw the decision boundary of linear SVM. Give a brief explanation.

2. [3 points] In the following image, circle the points such that removing that example
from the training set and retraining SVM, we would get a different decision boundary
than training on the full sample.

+ + +
+
|

You do not need to provide a formal proof, but give a one or two sentence explanation.

12



3. [3 points| Suppose instead of SVM, we use regularized logistic regression to learn the
classifier. That is,

1 e(w~z(i)+b)

+1[y¥ = 1]In

_ . HwH2 G) _
(U), b) = arg min T—Z I]_[y = O] In m

weR? heR 1 + e(waz)+b)

In the following image, circle the points such that removing that example from the
training set and running regularized logistic regression, we would get a different decision
boundary than training with regularized logistic regression on the full sample.

3} + -— -
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You do not need to provide a formal proof, but give a one or two sentence explanation.

13



4. [4 points] Suppose we have a kernel K (-, ), such that there is an implicit high-dimensional
feature map ¢ : R? — RP that satisfies Vr,z € RY, K(z,2) = ¢(x) - ¢(2), where
o(x) - 4(2) = o2, ¢(x):i6(2); is the dot product in the D-dimensional space.

Show how to calculate the Euclidean distance in the D-dimensional space

lo(z) — d(2)ll = 4| D _(¢(x); — p(2):)?

i=1

without explicitly calculating the values in the D-dimensional vectors. For this ques-
tion, you should provide a formal proof.

14



6 [30 points] Decision Tree and Ensemble Methods

An ensemble classifier Hr(z) is a collection of T' weak classifiers h:(z), each with some weight
a;, t=1,...,T. Given a data point x € R? Hrp(z) predicts its label based on the weighted
majority vote of the ensemble. In the binary case where the class label is either 1 or -1,
Hr(z) = sgn(X,_; avhy(z)), where hy(z) : RT — {~1,1}, and sgn(z) = 1 if z > 0 and
sgn(z) = —1 if z < 0. Boosting is an example of ensemble classifiers where the weights are
calculated based on the training error of the weak classifier on the weighted training set.

1. [10 points] For the following data set,

e Describe a binary decision tree with the minimum depth and consistent with the
data;

e Describe an ensemble classifier Ho(z) with 2 weak classifiers that is consistent
with the data. The weak classifiers should be simple decision stumps. Specify the
weak classifiers and their weights.

15



2. [10 points] For the following XOR data set,

e Describe a binary decision tree with the minimum depth and consistent with the
data;

e Let the ensemble classifier consist of the four binary classifiers shown below (the
arrow means that the corresponding classifier classifies every data point in that
direction as +), prove that there are no weights s, . . ., ay, that make the ensemble
classifier consistent with the data.

-0.5
h2¢

. . . . . )
-2 -15 -1 -0.5 0 0.5 1 1.5 2

16



3. [10 points] Suppose that for each data point, the feature vector x € {0,1}™, i.e., x
consists of m binary valued features, the class label y € {—1, 1}, and the true classifier
is a majority vote over the features, i.e. y = sgn(> ;" (2z; — 1)), where z; is the "™
component of the feature vector.

e Describe a binary decision tree with the minimum depth and consistent with the
data. How many leaves does it have?

e Describe an ensemble classifier with the minimum number of weak classifiers.
Specify the weak classifiers and their weights.

17



