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Clustering images 
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Clustering web search results 
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Some Data 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints) 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns… 

5.  …and jumps there 

6.  …Repeat until 
terminated! 9 ©Carlos Guestrin 2005-2014 

K-means 

n  Randomly initialize k centers 
¨   µ(0) = µ1

(0),…, µk
(0) 

n  Classify: Assign each point j∈{1,…N} to nearest 
center: 
¨    

n  Recenter: µi becomes centroid of its point: 
¨     

¨ Equivalent to µi ← average of its points! 
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What is K-means optimizing?  

n  Potential function F(µ,C) of centers µ and point 
allocations C: 

¨    

n  Optimal K-means: 
¨ minµminC F(µ,C)  

11 

N 
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Does K-means converge??? Part 1 

n  Optimize potential function: 

n  Fix µ, optimize C 
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Does K-means converge??? Part 2 

n  Optimize potential function: 

n  Fix C, optimize µ	
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Coordinate descent algorithms 

n  Want: mina minb F(a,b) 
n  Coordinate descent: 

¨  fix a, minimize b 
¨  fix b, minimize a 
¨  repeat 

n  Converges!!! 
¨  if F is bounded 
¨  to a (often good) local optimum  

n  as we saw in applet (play with it!) 
¨  (For LASSO it converged to the global  

optimum, because of convexity) 

n  K-means is a coordinate descent algorithm! 
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16 

(One) bad case for k-means 

n  Clusters may overlap 
n  Some clusters may be 

“wider” than others 
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n  Estimate a density based on x1,…,xN 

Density Estimation 
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Density Estimation 

Contour Plot of Joint Density 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Contour Plot of Joint Density 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

©Carlos Guestrin 2005-2014 19 

Gaussians in d Dimensions 
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P(x) = 1
(2π )m/2 || Σ ||1/2

exp − 1
2
x−µ( )T Σ−1 x−µ( )
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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p(xi|⇡, µ,⌃) =

Density as Mixture of Gaussians 

n  Approximate with density with a mixture of Gaussians 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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