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Why not just use Linear Regression?
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Using data to predict new data
" JEE

Nearest neighbor
" JEE
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Univariate 1-Nearest Neighbor
“
Given datapoints (x7,y?) (x2,y2)..(xN,yN),where we assume y'=f(x/) for some
unknown function f.
Given query point x9, your job is to predict y= f(x")
Nearest Neighbor:
1. Find the closest x; in our set of datapoints

j(nn) = argmin|x’ - x|
J

2. Predict y=y™

(

Here, this is
the closest
datapoint

Here’s a

dataset with

one input, one ‘
output and four
datapoints.
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1-Nearest Neighbor is an example of....

Instance-based learning
“

A function approximator

~
that has been around \
X
X
X

1 —y

—
/

since about 1910. !

- —y?

To make a prediction, 3

search database for

similar datapoints, and fit

with the local points.

—y

xn _»yl’l

SN— B

Four things make a memory based learner:

L] A distance metric

[ How many nearby neighbors to look at?&~
n A weighting function (optional)

n How to fit with the local points?c"
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1-Nearest Neighbor

" JEE
Four things make a memory based learner:
1. A distance metric
Euclidian (and many more)

How many nearby neighbors to look at?
One

A weighting function (optional)
Unused

N

@

ha

How to fit with the local points?
Just predict the same output as the nearest neighbor.

1 ~ =& mn IIX’ “Xin
75 |
pkict 7= J
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Multivariate 1-NN examples

Classification ¢~ %iag=~ Regregsion
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Multivariate distance metrics

Suppose the input vectors x', x2, ...xN are two dimensional:
x'=(x1,,x",), x2= (X2, ,x%,), .. xVN=(xN,, xN,).

One can draw the nearest-neighbor regions in input space.

Covt ok “‘yn«{' Uﬂv[a‘koﬂi N {L

Dist(xi,x/) = (x'; — X )2 + (X, — X2 Dist(x\,xi) =(xi, — ¥/,2+(3x', — 3%,

The relative scalings in the distance metric affect region shapes
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Euclidean distance metric
" JEE
Or equivalently, bxx) =\/2 7 (xi _x'i) Cl\'m')L S

S b |
D(x,x') = J(x-x)" Y (x-x') J ye~iZ

g}

where
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Other Metrics...
m Mahalanobis, Rank-based, Correlation-based,...
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Notable distance metrics
(and their level sets)

nyd( Z

L, norm (absolute)

— 1

|

Mahalanobis (here,
X on the previous slide is not
necessarily diagonal, but is
symmetric

L1 (max) norm
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Consistency of 1-NN
“ J
m Consider an estimator f, trained on n examples
e.g., 1-NN, neural nets,'fegression,...
m Estimator is consistent if true error goes to zero as

amount of data increases
e.g., for no n0|se data, consistent if;

'I.I , ’(“t
lim MSE(fa)=0 &
A Pi‘:) Al?.o?.—

m 1-NN is consistent (under some mild fineprint) (a EL re b
9 @

high
What about variance??? | Ax; u_s.“,,n.m:,,.,

Nego Com bao

m Regression is not consistent!
Representation bias
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1-NN overfits?

2oplying facods AD1:EN:0 to file Kbl
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k-Nearest Neighbor
" S

Four things make a memory based learner:

1.

A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
k
1. A weighting function (optional)
Unused
2. How fo fit with the local points?
Just predict the average output among the k nearest neighbors.
NN (Y & K ruw:r{*m,) v
N Gresiien: ‘n 4 ‘«SS:EC‘W”\

."7‘ :J,Z Z.(:NN(“)‘O m«'joviﬁj voka
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k-Nearest Neighbor (here k=9)

nnnnnnnnn

attedbated
mixeate

K-nearest neighbor for function fitting smoothes away noise, but there are
clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?
©Carlos Guestrin 2005-2014

Weighted k-NNs
" JEE—
m Neighbors are not all the same
X'l

' 1
' jt ﬂl \/I ‘kﬂz Yl* ngyg
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Four things make a memory based learner:
1.

Kernel regression
o

forn

A distance metric
Euclidian (and many more)

How many nearby neighbors to look at?
All of them

A weighting function (optional)
m = exp(-D(x', query)? / p?)

I

e

¥ )= ¢

gl
7

s 1) $ed eqparh

Nearby points to the query are weighted strongly, far points
weakly. The p parameter is the Kernel Width. Very

important.

How to fit with the local points?
Predict the weighted average of the outputs:
predict = Zmiy / Emi € 1eSSi fitation

‘\gjuss iM e |j‘\‘l‘A W‘kx
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' = exp(-D(x, query)? / p?) 10 IL 10

Weighting functions
«B—

1/(d+1)

"~

coococor
[SIr -

0 2

d --> d -->
‘)llﬂ-'\l lﬂ exp(-d * d) exp(1-d|) Uni form
b ’\ 1 1 1 1
'bﬁ 0.8 0.8 0.8
“"'(""' 0.6 0.6 0.6
0.4 0.4 0.4
I//'“ v v I 0.2 0.2 0.2
. g
! [ "SJ o LAy, o 2 |90 2 |% 0 2
d --> d --> d -->
1-4d (1 - ds2)2 (1 - ds3)°3
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
P 2 1% 0 2 [P0 2
d--> d --> d -->

Typically optimize p using é_ nof o LAY Our examples use Gaussian)

gradient descent
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Kernel regression predictions A
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Increasing the kernel width p means further away points get an
opportunity to influence you.

As p~>, the prediction tends to the global average.

S 1-nN

;;;;;;;;

Kernel regression on our test cases

tttttttttt

p=1/32 of x-axis width.

p=1/32 of x-axis width.
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p=1/16 axis width.

Choosing a good p is important. Not just for Kernel Regression, but for
all the locally weighted learners we’re about to see.

20
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Kernel regression can look bad

zzzzzzzzz

Time to try something more powerful...
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Locally weighted regression
* JEE——

Kernel regression:

Take a very very conservative function approximator
called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called
LINEAR REGRESSION. Locally weight it.
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Locally weighted regression
" JEE
Four things make a memory based learner:
L] A distance metric
Any
u How many nearby neighbors to look at?
All of them
[ A Wéigﬁting function (optional)
Kernels
™ = exp(-D(x', query)?/ p?)

m  How to fit with the local points? AL
General weighted regression: Z o

2

W -argmlnEﬂ (m

Bf o Cighd =1 {7
el T TN g e
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How LWR works l

x/

Linear regression
= Same parameters for

‘\'* 'erg“ih
‘hv ve

lou\llj

Locally weighted regression
= Solve weighted linear regression

all queries for each query
-1 -1
-(x"X)"X"Y w! =((1X)" TIX| - (11x)" Iy
7 0 0 0
Wil 0 = 0 0
[ = : .
iin of 0 0 0
0 0 0 =«
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Another view of LWR

(o]
[o]
(o]
(o]
o] 0
‘/kemel just right
e
X
Image from Cohn, D.A., Gk i, Z., and Jol

kernel too wide - includes nonlinear region

kernel too narrow - excludes some of linear region

Learning with Statistical Models", JAIR Volume 4, pages #20-145.

LWR on our test cases

' 2pplying facode 121:8N:9 to file kl.mbl 2P
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p = 1/16 of x-axis width.  p = 1/32 of x-axis width.
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p = 1/8 of x-axis width.
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Locally weighted polynomial regression

LW Linear Regression
Kernel width p at optimal
level.

Kernel Regression

Kernel width p at optimal
level. level.
p = 1/100 x-axis p = 1/40 x-axis

o

p = 1/15 x-axis

-\

Local quadratic regression is easy: just add quadratic terms to the X

matrix. As the regression degree increases, the kernel width can
increase without introducing bias.
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LW Quadratic Regression
Kernel width p at optimal

>N f’h.a"‘tu;,

cffy

27

Curse of dimensionality for

iniﬁnce-based learning

m Must store and retreve all data!
Most real work done during testing

For every test sample, must search through all dataset — very slow!
There are (sometimes) fast methods for dealing with large datasets

m Instance-based learning often poor with noisy or irrelevant
features

L0 g (NN) o
= ke ex,owdsal; wn it dim of Ak
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Curse of the irrelevant feature

* JEE
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What you need to know about

. iniiangg-based learning

m k-NN
Simplest learning algorithm
With sufficient data, very hard to beat “strawman” approach

Picking k?
Set k to n (number of data points) and optimize weights by gradient

m Kernel regression
descent
Smoother than k-NN
m Locally weighted regression
Generalizes kernel regression, not just local average

m Curse of dimensionality
Must remember (very large) dataset for prediction
Irrelevant features often killers for instance-based approaches
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Acknowledgment
= JEE
m This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:

http://www.cs.cmu.edu/~awm/tutorials
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