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Sparsity

m Vector w is sparse, if many entries are zero:

m Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100B, each prediction is expensive:
= [f part of an online system, too slow
= If wis sparse, prediction computation only depends on number of non-zeros

Interpretability: What are the ; Run
relevant dimension to make a :
prediction? Participant a
= E.g., what are the parts of the " s
brain associated with particular §
words? o
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Simple greedy model selection algorithm
“
m Pick a dictionary of features

e.g., polynomials for linear regression

m Greedy heuristic:

Start from empty (or simple) set of
features F,= &

Run learning algorithm for current set
of features F;

= Obtain h,
Select next best feature X;*

m e.g., X that results in lowest training error
learner when learning with £, + {X}

Fi.; € F+ {X}
Recurse
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Greedy model selection
" JEE

m Applicable in many settings:
Linear regression: Selecting basis functions
Naive Bayes: Selecting (independent) features P(X||Y)
Logistic regression: Selecting features (basis functions)
Decision trees: Selecting leaves to expand

m Only a heuristic!

But, sometimes you can prove something cool about it

m e.g., [Krause & Guestrin '05]: Near-optimal in some settings that
include Naive Bayes

m There are many more elaborate methods out there
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When do we stop???
" I

m Greedy heuristic:

Select next best feature X;"

= e.g., X that results in lowest training error
learner when learning with F; + {X}

+{X7}

When do you stop???

m When training error is low enough?
m When test set error is low enough?
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Regularization in Linear Regression
" JEE—
m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X—-0.30 X2

1.1+4,700,910.7 X — 8,585,638.4 X2 + ...
Lf M —
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o e
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m | Regularized or penalized regr?essmn aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method
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Variable Selection by Regularization
" S

m Ridge regression: Penalizes large weights

m What if we want to perform “feature selection”?
E.g., Which regions of the brain are important for word prediction?
Can’t simply choose features with largest coefficients in ridge solution

m Try new penalty: Penalize non-zero weights
Regularization penalty:

Leads to sparse solutions
Just like ridge regression, solution is indexed by a continuous param A

This simple approach has changed statistics, machine learning &
electrical engineering
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LASSO Regression
* JEE——

m LASSO: least absolute shrinkage and selection operator

m New objective:
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Geometric intuition of regularized

. opiggtivesintd.

k 2 k
<t($j) — (wo + Z wihz’(%‘))) +A Z |w;]

m LASSO solution:

W1 As50 = argmin E
w
=1

[
N /

Ridge Regression

Lasso

Geometric Intuition for Sparsity

From
Rob
Tibshirani
slides




Optimizing the LASSO Objective
* JEE

= LASSO solution: i 2 %
Wrasso = arg H}EHZ <t($j) — (wo+ Y wihi(ﬂﬂj))) +AY fwil
i=1 i=1

j=1
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Coordinate Descent
= JEEE

Given a function F
Want to find minimum

Often, hard to find minimum for all coordinates, but easy for one coordinate

Coordinate descent:

How do we pick next coordinate?

Super useful approach for *many* problems
Converges to optimum in some cases, such as LASSO
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Optimizing LASSO Objective
One Coordinate at a Time
" S

N

> (t(%’) = (wo + sz’hz’(%’))> + /\Z |wil

J=1
m Taking the derivative:
Residual sum of squares (RSS):

N k
9 RsS(w) = -2 helay) (t(xj) ~ (wo + Zwihi(xj))>

8@0@

Penalty term:
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Subgradients of Convex Functions
" O

m Gradients lower bound convex functions:

m Gradients are unique at w iff function differentiable at w

m Subgradients: Generalize gradients to non-differentiable points:
Any plane that lower bounds function:
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2

k k
(t(zj) - (wn+zwihz(l‘j))) FAY fwil
i=1 i=1

h.
M=
I

Taking the Subgradient

N
m Gradient of RSS term: ar =2 ;(hf(xﬂ)z
0 ’]’V
8_WRSS(W) = apwy — Cy =2 hix;) (t(xj) — (wo + Zwihi(xj)))
j=1 Al
If no penalty:
m Subgradient of full objective:

Setting Subgradientto 0
" JEE

agwg—Cg—)\ wy < 0
Ow,F(W)=<¢ [—ce— A, —ce+ A we=0
agwe — c¢ + A we >0
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Soft Thresholding
" I
(ce+ N)/ag co < —A
Wy = 0 cr € [=\ N
(Cg—)\)/ae co > A

From

Cﬁ Kevin Murphy
textbook

=
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Coordinate Descent for LASSO
(aka Shooting Algorithm)
N

m Repeat until convergence
Pick a coordinate / at (random or sequentially)

= Set: (Cg + )\)/ag cp < —A
Wy = 0 cr € [\
(Cg—)\)/ag ce > A
= Where: N
a = 22(/1/(;9))2

= 22 he(x;) (t(X]') — (wo + ZwJL,(xJ)))
j=1 Al

For convergence rates, see Shalev-Shwartz and Tewari 2009

m Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path
" JEE
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m Typical approach: select A using cross validation
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Now: LASSO Coefficient Path
" S
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LASSO Example

Term Least Squares  Ridge Lasso

Intercept 2.465 2,452  2.468
lcavol 0.680 0.420 0.533 From
lveight 0.263  0.238 0.169 ﬁg‘;hiram
age —0.141 —0.046 slides
1bph 0.210 0.162  0.002
svi 0.305 0.227  0.094
lcp —0.288 0.000
gleason —0.021 0.040
pgg4b 0.267 0.133
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Debiasing
S

Original (D = 4096, number of nonzeros = 160)
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From Kevin Murphy textbook
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What you need to know
“
m Variable Selection: find a sparse solution to learning
problem
m |, regularization is one way to do variable selection

Applies beyond regressions
Hundreds of other approaches out there

m LASSO objective non-differentiable, but convex 2 Use
subgradient

m No closed-form solution for minimization = Use
coordinate descent

m Shooting algorithm is very simple approach for solving
LASSO
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