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What now...
* JEE
m We have explored many ways of learning from
data

m But...
How good is our classifier, really?
How much data do | need to make it “good enough”?
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A simple setting...
" JEE—
m Classification
N data points 1iA

Finite number of possible hypothesis (e.g., dec. trees
of depth d)

m A learner finds a hypothesis h that is consistent

with training data
Gets zero error in training @
m \What is the probability that h ha than ¢

true error? 1[
error, (h)2e ' Any £20

How likely is a bad hypothesis to

. 38t N data goints right?

m Hypothesis h that is consistent with training data —
got N i.i.d. points right £

h “bad” if it gets all this data right, but has high true error

m Prob. h with error,(h) 2 ¢ gets one data point right
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m Prob. h with error, (h) 2 ¢ gets N data points right
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But there are many possible hypothesis
that are consistent with training data
= JEE—
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How likely is learner to pick a bad
h hesis

n Prob“. h with error,,.(h) 2 ¢ gets N data points right
leyy (1-g) _— by b
m There are k hypothesis consistent with data
How likely is learner to pick a bad one?
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Union bound
"
= P(AorBorCorDor...)< P(4) t PB)+R) *P(D)

How likely is learner to pick a bad

B} hmgihgﬁls

m Prob. a particular h with error,.(h) 2 ¢ gets N data
points right {55 Fhe, (|_£)~

m There are k hypothesis consistent with data

How likely is it that learner will pick a bad one out of these
k choices? o S What's &7
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Generalization error in finite

. hxggthﬁiii igagﬁﬁ [Haussler ’88]

m Theorem: Hypothesis space H finite, dataset D
with N i.i.d. samples, 0 <¢ <1 :for any learned ,,
hypothesis h that is consistent on the training data: ™"

P(errorue(h) > €) < [Hle ¢
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Using a PAC bound
" JEE
m Typically,‘;yse Cases:. ., P(erroriye(h) > €) < |Hle V¢
1: Pick ¢ and Efglrve you N
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Summary: Generalization error in

7 finite h thesi PacCesS [Haussler '88]

m Theorem: Hypothesis space H finite, dataset D
with N i.i.d. samples, 0 < ¢ <1 : for any learned
hypothesis h that is consistent on the training data:

P(erroriye(h) > ¢€) < |H\6_N6

Even if h makes zero errors in training data, may make errors in test
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Limitations of Haussler ‘88 bound
= —" (7707 rue (h) > €) < [Hle™™¢

m Consistent classifier labdd g
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m Size of hypothesis space
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What if our classifier does not have

zero error on the training data?
* JEE—
m A learner with zero training errors may make
mistakes in test set

m What about a learner with error, ;,(h) in training set?

|~l"\’)' lf\‘*rf:n) lero, Pan (‘\) >
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Simpler question: What's the

. gxpected error of a hypothesis?

m The error of a hypothesis is like estimating the
parameter of acoip! 1 5, ’é; 3
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m Chernoff bound: for N i.i.d. coin flips, x1,...,xN,
where x € {0,1}. For 0<e<1:

N
P (9 Jb;aﬂ > EQ < e~2N€
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Using Chernoff bound to estimate

. aSlror gfg single hypothesis
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But we are comparing many

. gaypothesis: Union bound

For each hypothesis h;:

P (erroryue(hi) — erroriqin(hi) > €) < e 2N€

What if | am comparing two hypothesis, h, and h,?
S Hwe  an hy pag ig pull bt Fhan Py by
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Generalization bound for |H|

. hmgthgﬁli

m Theorem: Hypothesis space H finite, dataset D
with N i.i.d. samples, 0 < ¢ <1 : for any learned
hypothesis h:

P (erroripye(hi) — errorirain(hi) > €) < e2N¢
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PAC bound and Bias-Variance

. Irﬁﬁﬁﬁﬁ

o 2
P (errorirye(h) — errorirqin(h) > €) 5{“ 2Ne
Fom o
or, after moving some terms aroung.,\,.,-a—\f'_""“" Shekn

with probability at least 1-6:
errorirye(h) < errorirqin(h) \/ln ‘H;; ln%
| b [ " Varitagy
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p Simf‘(; k;l,:,n.,,‘ high oo & I i (ot

[
m Important: PA’?: bound holds for all A,
but doesn’t guarantee that algorithm finds best h!!!
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What about the size of the

. ypothesi ?
N>E;I1H\1)—I—ln(15

~—

2¢2
m How large is the hypothesis space?
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Boolean formulas with m binary features
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Number of decision trees of depth k

In|H|+Ini
" N e
N 2 2¢€2
Recursive solution
Given m attributes S'M Hj J'D
H, = Number of decision trees of depth k
Hy, =2 K
<
Hy.1 = (#choices of root attribute) * (f\“’” - ?, If) M
(# possible left subtrees) *
(# possible right subtrees) /I
=m*H, *H,
m_hﬂj f'(ﬁ,b N
Write L, = log, H,
Ly=1 rely 1N Hems of
Lk+1 = |092 m + 2Lk \‘\Ilf "’\ O-L
So L, = (2%1)(1+log, m) +1 ﬁﬂ‘\ :H bk

©Carlos Guestrin 2005-2013 21

PAC bound for decision trees of

. oJepthic .1y

N> 2klogm—|—ln%

, 2oz (%
m Bad!!! //\

Number of points is exponential in depth!

m But, for N data points, decision tree can’t get too big...

N /Ui ‘h hM Mir H“"\ N Tl\wg

Number of leaves never more than number data points
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Number of Decision Trees with k Leaves
" JEE
m Number of decision trees of depth k is really
really big:
In |[H| is about 2Xlog m

m Decision trees with up to k leaves:
. ——————
[H| is about mkkz ¢~ ¢ n.cll7 IMJ.
= A very loose bound

In 1< e Inm +lclnk

mamch bl

PAC bound for decision trees with k

In|H|+1In}

70T true(h) < €rrorirain N

o 14
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k(1 Ink) + In 2
errorirye(h) < erroryrqin(h) + \/ (Inm —|—2]\I; ) +1n 5
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What did we learn from decision trees?
" S

m Bias-Variance tradeoff formalized

2k(Inm +Ink) + In 3
2N

erroripye(h) < errorirqin(h) + \/

m Moral of the story:
Complexity of learning not measured in terms of size hypothesis space,

but in maxi er of paints that allows consistent classification
Complexity N — no bias, lots of variance
. —
Lower than N — some bias, less variance
—__——/
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What about continuous hypothesis
- SRdSeS L.

erroriye(h) < errorieqin(h) + \/

m Continuous hypothesis space:
Hl =\ « SVmsy
Infinite variance???

—

classified e !
Called'VC dimension..) see readings for details
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What you need to know
* JE
m Finite hypothesis space
Derive results

Counting number of hypothesis
Mistakes on Training data

m Complexity of the classifier depends on number of
points that can be classified exactly
Finite case — decision trees
Infinite case — VC dimension

m Bias-Variance tradeoff in learning theory
m Remember: will your algorithm find best classifier?
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