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Logistic regression 

n  P(Y|X) represented by: 

n  Learning rule – MLE: 
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Perceptron as a graph 
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Linear perceptron  
classification region 
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Percepton, linear classification, 
Boolean functions 

n  Can learn x1 AND x2 

n  Can learn x1 OR x2 

n  Can learn any conjunction or disjunction 
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Percepton, linear classification, 
Boolean functions 

n  Can learn majority 

n  Can perceptrons do everything? 
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Going beyond linear classification 

n  Solving the XOR problem 
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Hidden layer 

n  Perceptron: 

n  1-hidden layer:   
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Example data for NN with hidden layer 
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Learned weights for hidden layer 
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NN for images 
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Weights in NN for images 
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Forward propagation for 1-hidden 
layer - Prediction 
n  1-hidden layer:   
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Gradient descent for 1-hidden layer – 
Back-propagation: Computing 

Dropped w0 to make derivation simpler 
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Gradient descent for 1-hidden layer – 
Back-propagation: Computing 

Dropped w0 to make derivation simpler 
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Multilayer neural networks 
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Forward propagation – prediction 

n  Recursive algorithm 
n  Start from input layer 
n  Output of node Vk with parents U1,U2,…: 
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Back-propagation – learning 

n  Just stochastic gradient descent!!!  
n  Recursive algorithm for computing gradient 
n  For each example 

¨ Perform forward propagation  
¨ Start from output layer 
¨ Compute gradient of node Vk with parents U1,U2,… 
¨ Update weight wi

k  
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Many possible response/link 
functions 
n  Sigmoid 

n  Linear 

n  Exponential 

n  Gaussian 

n  Hinge  

n  Max 

n  … 

Poster Session 
n  Thursday Dec 4, 2:30-4:30pm 

¨  Please arrive 15mins early to set up 

n  Everyone is expected to attend 
n  Prepare a poster 

¨  We provide poster board (32”x40”) and pins 
¨  Both one large poster and several pinned pages are OK 

n  Capture 
¨  Problem you are solving 
¨  Data you used 
¨  ML methodology 
¨  Results  

n  Prepare a 2-minute speech about your project 
n  Two instructors will visit your poster separately 
n  You’ll be graded on 3 criteria: 

¨  Scope:  how much stuff you did 
¨  Technical depth:  how challenging it was to do your project (and whether your methodology was 

correct) 
¨  Presentation:  how you share what you did 
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Convolutional Neural Networks &  
Application to Computer Vision 
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Contains slides from… 

n  LeCun & Ranzato 
n  Russ Salakhutdinov 
n  Honglak Lee 
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Neural Networks in Computer Vision 

n  Neural nets have made an amazing come back 
¨  Used to engineer high-level features of images 

n  Image features: 
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Some hand-created image 
features 
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Computer$vision$features$

SIFT$ Spin$image$

HoG$ RIFT$

Textons$ GLOH$
Slide$Credit:$Honglak$Lee$



13 

Scanning an image with a 
detector 
n  Detector = Classifier from image patches: 

n  Typically scan image with detector: 
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Using neural nets to learn  
non-linear features 
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Y LeCun
MA Ranzato

Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature 
transformation

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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But, many tricks needed to work well…  
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ConvoluAnal$Deep$Models$$
for$Image$RecogniAon$

• $Learning$mulAple$layers$of$representaAon.$

(LeCun, 1992)!

Convolution Layer 
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Y LeCun
MA Ranzato

Fully-connected neural net in high dimension

Example: 200x200 image
Fully-connected, 400,000 hidden units = 16 billion parameters

Locally-connected, 400,000 hidden units 10x10 fields = 40 

million params

Local connections capture local dependencies
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Parameter sharing 
n  Fundamental technique used throughout ML 
n  Neural net without parameter sharing: 

n  Sharing parameters: 
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Pooling/Subsampling  
n  Convolutions act like detectors: 

 
n  But we don’t expect true detections in every patch 
n  Pooling/subsampling nodes:  
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Example neural net architecture 
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Sample results 
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Y LeCun
MA Ranzato

Simple ConvNet Applications with State-of-the-Art Performance

Traffic Sign Recognition (GTSRB)
German Traffic Sign Reco 

Bench 

99.2% accuracy

#1: IDSIA; #2 NYU

House Number Recognition (Google) 
Street View House Numbers

94.3 % accuracy
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Example from Krizhevsky, Sutskever, Hinton 2012 
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Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

CONV 11x11/ReLU 96fm

LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU

FULL CONNECT

CONV 11x11/ReLU 256fm

LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm

CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm

MAX POOLING

FULL 4096/ReLU

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
4M

16M

37M

442K

1.3M

884K

307K

35K

4Mflop

16M

37M

74M

224M

149M

223M

105M

Results by Krizhevsky, Sutskever, Hinton 2012 
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Y LeCun
MA Ranzato

Object Recognition: ILSVRC 2012 results

ImageNet Large Scale Visual Recognition Challenge
1000 categories, 1.5 Million labeled training samples
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Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]
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Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

TEST 
IMAGE RETRIEVED IMAGES
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Application to scene parsing 
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Y LeCun
MA Ranzato

Semantic Labeling:
Labeling every pixel with the object it belongs to

[Farabet et al. ICML 2012, PAMI 2013]

Would help identify obstacles, targets, landing sites, dangerous areas
Would help line up depth map with edge maps

Learning challenges for neural nets 

n  Choosing architecture 
n  Slow per iteration and convergence 

n  Gradient “diffusion” across layers 
n  Many local optima 
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Random dropouts  

n  Standard backprop: 

n  Random dropouts: randomly choose edges not to update: 

n  Functions as a type of “regularization”… helps avoid “diffusion” of 
gradient 
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Revival of neural networks 

n  Neural networks fell into disfavor in mid 90s -early 2000s 
¨  Many methods have now been rediscovered J 

n  Exciting new results using modifications to optimization 
techniques and GPUs 

n  Challenges still remain: 
¨  Architecture selection feels like a black art 
¨  Optimization can be very sensitive to parameters 
¨  Requires a significant amount of expertise to get good results 
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