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Challenge 1: Complexity of Computing
Gradients
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Challenge 2: Data is streaming
AN
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m Assumption thus far: Batch data
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m But, e.g., in click prediction for ads is a streaming data task:

1 User enters query, and ad must be selected:
= Observe x, and must predict yi
"
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0 User either clicks or sn’t click on ad: 34. z ’{_«\-\,-\'%
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= Label yi is revealed afterwards
1 Google gets a reward if user C|ICkS op ad
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0 Weights must be Uﬁdated ftor next time:
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Online Learning Problem

m At each time step t:
1 Observe features of data point:

= Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course
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1 Make a prediction: =\
= Note: many models are possible, we focust'lllnear models
w  For simplicity, use ectornotaﬂon w é k «L
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1 Observe true label: S é « Xk

= Note: other observation models are possible, e.g., we don't observe the label directly, but only a n0|sy version... Details

beyond scope of course A {
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1 Update model:
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Rosenblatt|1957

The Perceptron Algorithm e«
* JEEE——
m Classification setting: y in {-1,+1}
m Linear model
O Prediction: \j = 3;3“((0')()

m Training: .
o Initialize weight vector; W = O ¢f
O At each time step: ¢
= Observe features: .
= Make prediction: ‘3:93‘1\(\9
= Observe true class:
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Update model:
o If prediction is not equal to truth
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Fundamental Practical Problem for All Online
Learning Methods: Which weight vector to report?
* JEEE
e A
m Perceptron prediction: = sign (w.x>
m Suppose you run online learning method and want to sell

your learned weight vector... Which one do you sell???
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Choice can make a huge difference!!
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[Freund & Schapire '99]
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Mistake Bounds
* JEEE—
m Algorithm ‘pays” every time it makes a mistake:

Groogle loss fmhien [t mistakes

m How many mistakes is it going to make?
T —

Miskake Bound

Linear Separability: More formally, Using Margin

w.x <0

m Data linearly separable, if there exists
davector J w |(w¢|[ =]
Tamargin 5 0
m Such that «all 95\“‘3 ove ot leagt Y avay o w* x
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Perceptron Analysis: Linearly Separable Case
"
m  Theorem [Block, Novikoff]:
O Given a sequence of labeled examples: ()( 3 (X Yy )
[ Each feature vector has bounded norm: % l‘xﬁ \\5 R

[ If dataset is linearly separable:
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m  Then the«numh@@@t/a@ made by the online perceptron on any such sequence
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Perceptron Proof for Linearly Separable case

& Every time we make a mistake, we get gamma closer to w:
1 Mistake at time® w1 = wl) + y(‘) x®
td £ Tt
"1 Taking dot product with w: " "' - w*(we*‘] x ) Wit “"j w.x
0 Thus afte@ﬂ

istakes:  fwll=© gt * >
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@ Similarly, norm of wt*") doesn’t grow too fast

O w2 = w2 4+ 2y Ow® - xO) 4= O 2 g g
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1 Thus, after m mistak ([u?\('
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m Putting all together
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Beyond Linearly Separable Case

“
m  Perceptron algorithm is super cool!

No assumption about data distribution!
= Could be generated by an oblivious adversary,

po need o be iid
Makes {fixed number of mistakes} and it's
done for ever!

= Even if you see infinite data
— Ld

. +
m  However, real world nor(llnearly separable) _ +

Can’t expect never to make mistakes again

Analysis extends to non-linearly separable + &
case

Very similar bound, see Freund & Schapire
Converges, but ultimately may not give ggod
accuracy (make many mistakes)
SAAR
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What you need to know
" JEE—
m Notion of online learning — bse+ # miskles
m Perceptron algorithm
m Mistake bounds and proof

m In online learning, report averaged weights at the end
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What's the Perceptron
Optimizing?
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What is the Perceptron Doing???
" JEE

m WWhen we discussed logistic regression:

Started from maximizing conditional log-likelihood

|l‘F -{(\f \( w\ - vvmk ‘oa v(“—- P(T I)( w) - Geadient
- [R al'id it

m \When we discussed the Perceptron:

Started from description of an algorithm

m What is the Perceptron(optimizing)????
win 2 e (44,5 0 )
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Perceptron Prediction: Margin of
nfiden
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Hinge Loss
|
m Perceptron prediction: S;j,\((,o.x)
m Makes a mistake when: o & qurso ol‘ Less

wx <o =
g Q _jqu ‘( xjmxfo 1\.‘/\](. Loss

m Hinge loss (same as maximizing the margin used by SVMs)
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Minimizing hinge loss in Batch Setting
" N
m Given a dataset: (X'.j')w. (XN'\JN)

m  Minimize average hinge loss:
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Subgradients of Convex Functions
" S

m Gradients lower bound convex functions:

m Gradients are unique‘at w iff function differentiable at w

m Subgradients: Generalize(gradient# to non-differentiable points:

prlane that | v‘\hlﬁr bounds function: \J € wa(tu)
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Subgradient of Hinge
* JEEE—
m Hinge loss: /’\

wbﬁ X

N
~ Tk=0

m Subgradient of hinge loss: X
O y® (wx®) > 0: Tylz© -
I yO (wax®) < 0: (! = -9 N

® (w.x®) = 0
Olfy (V\{.X )=0: bw:&: [“1)‘;,0]
I In one line:

L (wyry) = 1 (tjw.xéo) (-9-¥)
o N
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Subgradient Descent for Hinge Minimization
" JEE

m Given data:

= Want to minimize:

m Subgradient descent works the same as gradient descent:
[ But if there are multiple subgradients at a point, just pick (any) one:

©Carlos Guestrin 2005-2013

22

11



Perceptron Revisited

m Perceptron update:
wtD o w® 41 [y O w® . x®) < 0] yOx®
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m Batch hinge minimization update:

. . immi2aton
Diff 2 hin g Hvge Losc mimm -
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What you need to know
" JEE—

m Perceptron is optimizing hinge loss
m Subgradients and hinge loss
m (Sub)gradient decent for hinge objective
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