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What about continuous variables? 

n  Billionaire says: If I am measuring a continuous 
variable, what can you do for me? 

n  You say: Let me tell you about Gaussians… 
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Some properties of Gaussians 

n  affine transformation (multiplying by scalar and 
adding a constant) 
¨ X ~ N(µ,σ2) 
¨ Y = aX + b    è Y ~ N(aµ+b,a2σ2) 

n  Sum of Gaussians 
¨ X ~ N(µX,σ2

X) 
¨ Y ~ N(µY,σ2

Y) 
¨ Z = X+Y    è  Z ~ N(µX+µY, σ2

X+σ2
Y) 
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Learning a Gaussian 

n  Collect a bunch of data 
¨ Hopefully, i.i.d. samples 
¨ e.g., exam scores 

n  Learn parameters 
¨ Mean 
¨ Variance 
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MLE for Gaussian 

n  Prob. of i.i.d. samples D={x1,…,xN}: 

n  Log-likelihood of data: 
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Your second learning algorithm: 
MLE for mean of a Gaussian 

n  What’s MLE for mean? 
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MLE for variance 

n  Again, set derivative to zero: 

8 ©2005-2014 Carlos Guestrin 

Learning Gaussian parameters 

n  MLE: 

n  BTW. MLE for the variance of a Gaussian is biased 
¨ Expected result of estimation is not true parameter!  
¨ Unbiased variance estimator: 
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Prediction of continuous variables 

n  Billionaire sayz: Wait, that’s not what I meant!      
n  You sayz: Chill out, dude. 
n  He sayz: I want to predict a continuous variable 

for continuous inputs: I want to predict salaries 
from GPA. 

n  You sayz: I can regress that…  
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The regression problem 
n  Instances: <xj, tj> 
n  Learn: Mapping from x to t(x) 
n  Hypothesis space: 

¨  Given, basis functions 
¨  Find coeffs w={w1,…,wk} 

¨  Why is this called linear regression??? 
n  model is linear in the parameters 

n  Precisely, minimize the residual squared error: 
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The regression problem in matrix notation 

N
 data points 

K basis functions 

N
 data points 

observations weights 

K basis func
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Minimizing the Residual 
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Regression solution = simple matrix operations 

where 

k×k matrix  
for k basis functions  

k×1 vector 
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n  Billionaire (again) says: Why sum squared error??? 
n  You say: Gaussians, Dr. Gateson, Gaussians… 

n  Model: prediction is linear function plus Gaussian noise 
¨  t(x) = ∑i wi hi(x) + εx	



n  Learn w using MLE 

But, why? 
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Maximizing log-likelihood 

Maximize: 

Least-squares Linear Regression is MLE for Gaussians!!! 
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Announcements   

n  Go to recitation!! J 
¨ Wednesday, 5pm in EEB 045 

n  First homework will go out today 
¨ Due on October 14 
¨ Start early!! 
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Bias-Variance tradeoff – Intuition  

n  Model too “simple” è does not fit the data well 
¨ A biased solution 

n  Model too complex è small changes to the 
data, solution changes a lot 
¨ A high-variance solution 
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(Squared) Bias of learner 

n  Given dataset D with N samples,  
learn function hD(x) 

n  If you sample a different dataset D’ with N samples,  
you will learn different hD’(x) 

n  Expected hypothesis: ED[hD(x)] 

n  Bias: difference between what you expect to learn and truth 
¨  Measures how well you expect to represent true solution 
¨  Decreases with more complex model  
¨  Bias2 at one point x: 
¨  Average Bias2: 
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Variance of learner 

n  Given dataset D with N samples,  
learn function hD(x) 

n  If you sample a different dataset D’ with N samples,  
you will learn different hD’(x) 

n  Variance: difference between what you expect to learn and 
what you learn from a particular dataset  
¨  Measures how sensitive learner is to specific dataset 
¨  Decreases with simpler model 
¨  Variance at one point x: 
¨  Average variance: 
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Bias-Variance Tradeoff 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 
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Bias-Variance Decomposition of Error 

n  Expected mean squared error: 

n  To simplify derivation, drop x:  

n  Expanding the square: 
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Moral of the Story: 
Bias-Variance Tradeoff Key in ML 

n  Error can be decomposed: 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 

MSE = E

D

h
E

x

h
(t(x)� h

D

(x))2
ii

= E

x

h�
t(x)� h̄

N

(x)
�2i

+ E

D

h
E

x

h�
h̄(x)� h

D

(x)
�2ii

©2005-2014 Carlos Guestrin 

24 

What you need to know 

n  Regression 
¨ Basis function = features 
¨ Optimizing sum squared error 
¨ Relationship between regression and Gaussians 

n  Bias-variance trade-off 
n  Play with Applet 

©2005-2014 Carlos Guestrin 
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Overfitting 
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Bias-Variance Tradeoff 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 
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Training set error 

n  Given a dataset (Training data) 
n  Choose a loss function 

¨ e.g., squared error (L2) for regression 

n  Training set error: For a particular set of 
parameters, loss function on training data: 
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Training set error as a function of 
model complexity 
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Prediction error 

n  Training set error can be poor measure of 
“quality” of solution 

n  Prediction error: We really care about error 
over all possible input points, not just training 
data: 
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Prediction error as a function of 
model complexity 
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Computing prediction error 

n  Computing prediction  
¨  Hard integral 
¨  May not know t(x) for every x 

n  Monte Carlo integration (sampling approximation) 
¨  Sample a set of i.i.d. points {x1,…,xM} from p(x) 
¨  Approximate integral with sample average 
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Why training set error doesn’t 
approximate prediction error? 

n  Sampling approximation of prediction error: 

n  Training error : 

n  Very similar equations!!!  
¨  Why is training set a bad measure of prediction error??? 
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Why training set error doesn’t 
approximate prediction error? 

n  Sampling approximation of prediction error: 

n  Training error : 

n  Very similar equations!!!  
¨  Why is training set a bad measure of prediction error??? 

Because you cheated!!!  
 

Training error good estimate for a single w,  
But you optimized w with respect to the training error,  

and found w that is good for this set of samples 
 

Training error is a (optimistically) biased  
estimate of prediction error  
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Test set error 

n  Given a dataset, randomly split it into two parts:  
¨ Training data – {x1,…, xNtrain} 
¨ Test data – {x1,…, xNtest} 

n  Use training data to optimize parameters w 
n  Test set error: For the final output w, evaluate 

the error using: 
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^ 
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Test set error as a function of 
model complexity 
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Overfitting 

n  Overfitting: a learning algorithm overfits the 
training data if it outputs a solution w when there 
exists another solution w’ such that: 
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How many points to I use for 
training/testing? 

n  Very hard question to answer! 
¨  Too few training points, learned w is bad 
¨  Too few test points, you never know if you reached a good solution 

n  Bounds, such as Hoeffding’s inequality can help: 

n  More on this later this quarter, but still hard to answer 
n  Typically: 

¨  If you have a reasonable amount of data, pick test set “large enough” 
for a “reasonable” estimate of error, and use the rest for learning 

¨  If you have little data, then you need to pull out the big guns… 
n  e.g., bootstrapping  
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Error estimators  
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Error as a function of number of training 
examples for a fixed model complexity 

little data infinite data 
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Error estimators  

Be careful!!!  
 

Test set only unbiased if you never never ever ever 
do any any any any learning on the test data 

 
For example, if you use the test set to select 

the degree of the polynomial… no longer unbiased!!! 
(We will address this problem later in the quarter) 
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What you need to know 

n  True error, training error, test error 
¨  Never learn on the test data 
¨  Never learn on the test data 
¨  Never learn on the test data 
¨  Never learn on the test data 
¨  Never learn on the test data 

n  Overfitting 
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What about prior  

n  Billionaire says: Wait, I know that the thumbtack is 
“close” to 50-50. What can you do for me now? 

n  You say: I can learn it the Bayesian way… 

n  Rather than estimating a single θ, we obtain a 
distribution over possible values of θ	
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Bayesian Learning 

n  Use Bayes rule: 

n  Or equivalently: 
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Bayesian Learning for Thumbtack 

n  Likelihood function is simply Binomial: 

n  What about prior? 
¨ Represent expert knowledge 
¨ Simple posterior form 

n  Conjugate priors: 
¨ Closed-form representation of posterior 
¨ For Binomial, conjugate prior is Beta distribution 
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Beta prior distribution – P(θ) 

n  Likelihood function: 
n  Posterior: 

Mean: 
 
Mode:  

Beta(2,3) Beta(20,30) 

50 ©2005-2014 Carlos Guestrin 

Posterior distribution 

n  Prior: 
n  Data: αH heads and αT tails 

n  Posterior distribution:  

Beta(2,3) Beta(20,30) 



26 

51 ©2005-2014 Carlos Guestrin 

Using Bayesian posterior 

n  Posterior distribution:  

n  Bayesian inference: 
¨ No longer single parameter: 

¨  Integral is often hard to compute 
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MAP: Maximum a posteriori 
approximation 

n  As more data is observed, Beta is more certain 

n  MAP: use most likely parameter: 
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MAP for Beta distribution 

n  MAP: use most likely parameter: 

n  Beta prior equivalent to extra thumbtack flips 
n  As N → 1, prior is “forgotten” 
n  But, for small sample size, prior is important! 


