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Features can be discrete or continuous!
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Optimizing concave function —
radient nt

m Conditional likelihood for Logistic Regression is concave.@
optimum with gradient ascent
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Update rule: Aw — nvwl(W)
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Gradient Ascent for LR
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The Cost, The Cost!F!!LThink about
the cost... o pang
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m What's the cost of a gradient update step sfor kR’ﬁ??
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Learning Problems as Expectations
“

m  Minimizing loss in training data:

Given dataset: ¥', (z, oY X‘, '\/“\‘, P({)

= Sampled iid from some distribution p(x) on features:
Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

N LR = In PERI¥ ) phlt

(p(w) = N U(w, Xj)
Arr’(, /

m However, we should really minimize expected loss on all data:

l(w) = Ex [{(w,x)] = [ p(x)l(w,x)dx
A(r;cho‘ loss oLy A KAt N
m  So, we are approximating the integral by the average on the training data
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Gradient descent in Terms of Expectatlons

“ J
m “True” objective function:

l(w) = Ex [l(w,x)] = /p(x)f(w,x)d:x

m Taking the gradient:

T Als) = Dus( B Lot ) - 6L L)
m “True” gradient descent rule:

o ot

m How do we estimate expected gradient?

SGD: Stochastic Gradient Ascent (or Descent)
"
m “True” gradient: Vﬁ(w) = Py [VK(W,X)]

m Sample based approximation; Bypred. o
VI = Ex (wz ) L U L) f( yehivk by
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m What if we estimate gradient with just one sample???
Unbiased estimate of gradient €x(0v{ (~,y87 = 0Tw)
Very noisy!

Called stochastic gradient ascent (or descent)
= Among many other names

VERY useful in practice!!!
\/"_’—_
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Stochastic Gradient Ascent for

_ Loaistic Reﬁression

m Logistic loss as a stochastic function:
By [t(w, %)] = Ex [In P(y]x, w) — A|[w][3]
m Batch gradient ascent updates: ,_— batch bppranch w5 Al Lel
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Stochastic Gradient Descent:

_ general case

m Givena stochastic function of parameters: { ("") - Ex [F (u ,X}
Want to find m&Rimum
wt ¢ ‘\r]m"::\ 'Hw) = hr):,"\ Ex [{(v)(g
= Start from w(©) 6.7, Wl - o
m Repeat until convergence:
Get a sample data point xt
Update parameters: o

Wi e W g GuAeX)

m  Works on the online learning setting!
m  Complexity of each gradient step is constant in number of examples!
m In general, step size changes with iterations ’L« =
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What you should know...
" JE
m Classification: predict discrete classes rather than

real values

m Logistic regression model: Linear model
Logistic function maps real values to [0,1]

m Optimize conditional likelihood
m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent

Boosting
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Fighting the bias-variance tradeoff
" S

m Simple (a.k.a. weak) learners are good
e.g., naive Bayes, logistic regression, decision stumps
(or shallow decision trees)
Low variance, don’t usually overfit too badly
m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

m Can we make weak learners always good???
No!!!

But often yes...
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Voting (Ensemble Methods)
“ JE

m  Instead of learning a single (weak) classifier, learn many weak classifiers that are

good at different parts of the input space k . X {
m  Output class: (Weighted) vote of each classifier T ) y €l ’: H{
Classifiers that are most “sure” will vote with more conviction

Classifiers will be most “sure” about a particul f the space
On average, do better than single classifjef! -{-U\ ( ;ku

H(\£> :_(-lj,\ 7{1;' MW%-}\ wujl\-l

f (meil hes vk “(SESH

®J, o i Yzl
l\{-&):{_: i{*:ﬂx <) ot fpen, (-|)

tlse
= But how do you ??? f J) Sp~ (+ ')
force classifiers to learn about different parts clf the input space?
weigh the votes of different classifiers?
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Boosting [Schapire, 1989]

“
m |dea: given a weak learning alg, run it multiple timeg’on (reweighted)

training data, then let learned classifiers vote

4
m On each iteration t:
weight each training example by how incorrectly it was classified 'Uu.nc\y
Learn a hypothesis — h,
A strength for this hypothesis — o,

T
m Final classifier: H(J\ - S;j“ (?“ 0{4 £\£ ()0>

m Practically useful
m Theoretically interesting
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Learning from weighted data
“ J

m Sometimes not all data points are equal
Some data points are more equal than others
m Consider a weighted dataset
D(j) — weight of jth training example (xi,y)
fn{erpretations:

= jth training example counts as D(j) examples
= If  were to “resample” data, | would get more samples of “heavier” data points

m Now, in all calculations, whenever used, jth training example counts as

T et desc N )
NL:,-\\) A 'l_ ZDQ\ 0 ((‘”ﬂ(

PR gt 15 weighi

©Carlos Guestrin 2005-2014




ol it b Fﬂn on  hard  points , orus fact s
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.
_ fion o({-l\(f*}
HO < ign (Z, 760 )

©Carlos Guestrin 2005-2014 17

Picking Weight of Weak Learner
" S
m Weigh h, higher if it did well on training data
(weighted by D,): i fezoy | purfickan
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]
*
Training error of flnal cIaSS|f|er is bounded by:
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Why choose ¢, for hypothesis 4, this way?

[Schapire, 1989]
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Training error of final classifier is bounded by: ZDt exp(—ary’ hu(”)
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Why choose ¢, for hypothesis #, this way?
[Schapire, 1989]
" S

Training error of final classifier is bounded by:

—Z]l H(x7) # 4] <—Z€XP —y’ f(2))

||’:]H

Where  f(z) = Zatht(:c) H(w)—szgn(f(w))

If we minimize [], Z,, we minimize our training error
—

AdaBoost tightens this bound greedily, by choosing ¢; and %, on
each iteration to minimize Z, - -

N

Zt = Z Dy(j) exp(—azy’ he(a7))
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