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Features can be discrete or continuous!
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Optimizing concave function —
radient nt

m Conditional likelihood for Logistic Regression is concave.@
optimum with gradient ascent
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Update rule: Aw — nvwl(W)
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The Cost, The Cost!!! Think about

. the cost...
I
m What's the cost of a gradient update step for LR???
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Learning Problems as Expectations
" JE

m  Minimizing loss in training data:

Given dataset:
= Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

1 Y A
(o(W) = 3y 21w ¥)
m However, we should really minimize expected loss on all data:
t(w) = Ex £ )] = [ po0)t(w,x)ix

m  So, we are approximating the integral by the average on the training data
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Gradient descent in Terms of Expectations
=

m “True” objective function:

l(w) = Ex [l(w,x)] = /p(x)f(w,x)dx
m Taking the gradient:

m “True” gradient descent rule:

m How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)
"
m “True” gradient: Vﬁ(w) = F, [V@(W,X)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent for

Loaistic Reﬁression

m Logistic loss as a stochastic function:

Ex [¢((w,x)] = Ex [In P(y|x, w) — Al|w|[3]

m Batch gradient ascent updates:

N
1 Ve (i ;
w™ w4 {—sz“’ ty o P = 1|x<f>,w<“>1}

m Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wﬁt) + 1 {—)\wgt) + .rgt) " — Py =1x, W(t))]}
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Stochastic Gradient Descent:

_ general case

m Given a stochastic function of parameters:
Want to find maximum

m Start from w©

m Repeat until convergence:
Get a sample data point xt
Update parameters:

m  Works on the online learning setting!
m  Complexity of each gradient step is constant in number of examples!
m In general, step size changes with iterations
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What you should know...
" JE
m Classification: predict discrete classes rather than

real values

m Logistic regression model: Linear model
Logistic function maps real values to [0,1]

m Optimize conditional likelihood
m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent

Boosting
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Fighting the bias-variance tradeoff
" SN

m Simple (a.k.a. weak) learners are good
e.g., naive Bayes, logistic regression, decision stumps
(or shallow decision trees)
Low variance, don’t usually overfit too badly
m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

m Can we make weak learners always good???

No!!l
But often yes...
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Voting (Ensemble Methods)
“

m  Instead of learning a single (weak) classifier, learn many weak classifiers that are
good at different parts of the input space

m  Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more conviction
Classifiers will be most “sure” about a particular part of the space
On average, do better than single classifier!

m  But how do you ???
force classifiers to learn about different parts of the input space?

weigh the votes of different classifiers?
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Boosting [Schapire, 1989]
"

m |dea: given a weak learning alg, run it multiple times on (reweighted)
training data, then let learned classifiers vote

m On each iteration t:
weight each training example by how incorrectly it was classified
Learn a hypothesis — h,
A strength for this hypothesis — o

m Final classifier:

m Practically useful
m Theoretically interesting
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Learning from weighted data
" JEE

m Sometimes not all data points are equal
Some data points are more equal than others
m Consider a weighted dataset
D(j) — weight of jth training example (xi,y)
Interpretations:

= jth training example counts as D(j) examples
= If | were to “resample” data, | would get more samples of “heavier” data points

m Now, in all calculations, whenever used, jth training example counts as
D(j) “examples”
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AdaBoost
= JEE

m Initialize weights to uniform dist: D,(j) = 1/N

m Fort=1...T
Train weak learner h, on distribution D, over the data
Choose weight a,

Update weights:

Dt+1 (]) — Dt(]) eXp(_atyjht(l‘j))

Zy

= Where Z, is normalizer: N _ _
2t = ZDt(j) exp(—auy’ hi(a?))
j=1

m Output final classifier:
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Picking Weight of Weak Learner
" JEE—
m Weigh h, higher if it did well on training data
(weighted by D,):

1 <1_€t>
ar = —In
2 €t

Where ¢, is the weighted training error:

N
€ = ZDt(y‘)ﬂ[ht@j) # ]
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]
" JEE

Training error of final classifier is bounded by:
1
it J — ]
NZ_ (a) # 4/ sz_l 1))

Where f(z) =) athy(z); H(z) = sign(f(z))
t

Why choose ¢ for hypothesis #, this way?

[Schapire, 1989]
" JEE

Training error of final classifier is bounded by: ZDt exp(—ary’ hu(”)

Nz H@) # 4 zexp Y £a) Hzt

Where f(z) =Y aihi(x); H(a:) = sign(f(x))
t
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]
* JEE—

Training error of final classifier is bounded by:

||’:]H

—Z]l H(x7) # 4] <—Z€XP —y’ f(2))
Where f(z) = Zatht(x); H(m) = sign(f(x))
t

If we minimize [], Z,, we minimize our training error

AdaBoost tightens this bound greedily, by choosing ¢; and 4, on
each iteration to minimize Z,

N

Zy =) Dy(j) exp(—ary’ hi(a?))

Jj=1
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Why choose ¢ for hypothesis #, this way?

[Schapire, 1989]
" JEE

We can minimize this bound by choosing ¢; on each iteration to minimize Z,

N
Zy =) Di(j) exp(—asy’ hy(27))

Jj=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:

1—c¢
e
21 &

You'll prove this in your homework! ©
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Strong, weak classifiers
* JEE

m |f each classifier is (at least slightly) better than random
g <0.5

m AdaBoost will achieve zero training error (exponentially fast):

1 N A A T T
N UHE) £y <[] 20 < exp (—22(1/2 - >>

m |s it hard to achieve better than random guessing?
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Boosting results — Digit recognition
[Schapire, 1989]

10 100 1000
# rounds

m Boosting often
Robust to overfitting
Test set error decreases even after training error is zero

©Carlos Guestrin 2005-2014 24

12



Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets
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error boosting C4.5
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AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer. ML 1999]
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Boosting and Logistic Regression
" JEE——
Logistic regression assumes:
1
1+ exp(f(x))

And tries to maximize data likelihood:
N

1
P(D|H) = E 1 + exp(—y/ f(27))

P(Y =1|X) =

Equivalent to minimizing log loss

N

> (1 + exp(—y f(27)))

=1

Boosting and Logistic Regression
"

Logistic regression equivalent to minimizing log loss
N

> In(1+exp(—y f(a?)))

Jj=1

Boosting minimizes similar loss function!!
1 N T
> ex(—y fa) = [[ %
j=1 t=1

Both smooth approximations of 0/1 loss!
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Logistic regression and Boosting
" JEE

Logistic regression: Boosting:
m Minimize loss fn m Minimize loss fn
N N
> In(1+ exp(—y’ f(a7))) > exp(—y f(27))
j=1 =1
m Define ] Defir(1e) > (@)
flx) = athi(x
f(x) :wo—i-Zwixi t
i where #,(x) defined
where features x, are dynamically to fit data
predefined (not a linear classifier)

m Weights w; are learned in = Weights o, learned
joint optimization incrementally
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What you need to know about Boosting
" S

m Combine weak classifiers to obtain very strong classifier

Weak classifier — slightly better than random on training data

Resulting very strong classifier — can eventually provide zero training error
AdaBoost algorithm
Boosting v. Logistic Regression

Similar loss functions

Single optimization (LR) v. Incrementally improving classification (B)
Most popular application of Boosting:

Boosted decision stumps!

Very simple to implement, very effective classifier
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