Risk of Ridge Regression

Instructor: Sham Kakade

0.1 Analysis

Let us rotate each X_{i} by V^{\top}, i.e.

$$
X_{i} \leftarrow V^{\top} X_{i}
$$

where V is the right matrix of the SVD of the $n \times d$ matrix \mathbf{X} (note this rotation does not alter the predictions of rotationally invariant algorithms).

In this rotated, coordinate system, we have that:

$$
\boldsymbol{\Sigma}:=\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{d}\right)
$$

and that:

$$
\left[\hat{w}_{\lambda}\right]_{j}=\frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i}\left[X_{i}\right]_{j}}{\lambda_{j}+\lambda}
$$

It is straightforward to see that:

$$
w_{*}=\mathbb{E}\left[\hat{w}_{0}\right]
$$

(where w_{*} is the minimizer defined in the previous lecture). It follows that:

$$
\left[\mathbb{E}[\hat{w}]_{\lambda}\right]_{j}:=\mathbb{E}\left[\hat{w}_{\lambda}\right]_{j}=\frac{\lambda_{j}}{\lambda_{j}+\lambda}\left(w_{*}\right)_{j}
$$

by just taking expectations.
Lemma 0.1. (Risk Bound) If $\operatorname{Var}\left(Y_{i}\right)=\sigma^{2}$, we have that:

$$
R\left(\hat{w}_{\lambda}\right)=\frac{\sigma^{2}}{n} \sum_{j}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2}+\sum_{j}\left(w_{*}\right)_{j}^{2} \frac{\lambda_{j}}{\left(1+\lambda_{j} / \lambda\right)^{2}}
$$

The above is an equality if $\operatorname{Var}\left(Y_{i}\right) \leq \sigma^{2}$.
Proof. Note that in our coordinate system we have $X=U D^{\top}$ (from the thin SVD), since $X^{\top} X$ is diagonal. Here, the diagonal entries are $\sqrt{n \lambda_{j}}$. Letting η be the noise:

$$
Y=\mathbb{E}[Y]+\eta
$$

and

$$
\Sigma_{\lambda}=\Sigma+\lambda I
$$

so that $\hat{w}_{\lambda}=\frac{1}{n} \Sigma_{\lambda} X^{\top} Y$. We have that:

$$
\begin{aligned}
\mathbb{E}_{Y}\left\|\hat{w}_{\lambda}-\mathbb{E}[\hat{w}]_{\lambda}\right\|_{\Sigma}^{2} & =\frac{1}{n^{2}} \mathbb{E}_{\eta}\left[\eta^{\top} X \Sigma_{\lambda} \Sigma \Sigma_{\lambda} X \eta\right] \\
& =\frac{1}{n^{2}} \mathbb{E}_{\eta}\left[\eta^{\top} \operatorname{UDiag}\left(\ldots, \frac{n \lambda_{j}^{2}}{\left(\lambda_{j}+\lambda\right)^{2}}, \ldots\right) U^{\top} \eta\right] \\
& =\frac{1}{n} \sum_{j} \frac{\lambda_{j}^{2}}{\left(\lambda_{j}+\lambda\right)^{2}} \mathbb{E}_{\eta}\left[U^{\top} \eta\right]_{j}^{2} \\
& =\frac{\sigma^{2}}{n} \sum_{j} \frac{\lambda_{j}^{2}}{\left(\lambda_{j}+\lambda\right)^{2}}
\end{aligned}
$$

This holds with equality if $\operatorname{Var}\left(Y_{i}\right)=1$. For the bias term,

$$
\begin{aligned}
\left\|\bar{w}_{\lambda}-w_{*}\right\|_{\Sigma}^{2} & =\sum_{j} \lambda_{j}\left(\left[\bar{w}_{\lambda}\right]_{j}-\left[w_{*}\right]_{j}\right)^{2} \\
& =\sum_{j}\left(w_{*}\right)_{j}^{2} \lambda_{j}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}-1\right)^{2} \\
& =\sum_{j}\left(w_{*}\right)_{j}^{2} \lambda_{j}\left(\frac{\lambda}{\lambda_{j}+\lambda}\right)^{2}
\end{aligned}
$$

and the result follows from algebraic manipulations.

0.2 A (dimension-free) margin bound

There following bound characterizes the risk for two natural settings for λ.
Theorem 0.2. Assume the linear model is correct: Define \bar{d} as:

$$
\bar{d}=\frac{1}{n} \sum_{i}\left\|X_{i}\right\|^{2}
$$

For $\lambda=\frac{\sqrt{\bar{d}}}{\left\|w_{*}\right\| \sqrt{ } n}$, then:

$$
R\left(\hat{w}_{\lambda}\right) \leq \frac{\left\|w_{*}\right\| \sqrt{\bar{d}}}{\sqrt{n}} \leq \frac{\left\|w_{*}\right\| X_{+}}{\sqrt{n}}
$$

where X_{+}is a bound on the norm of $\|X\|_{i}$.
Conceptually, the second bound is 'dimension free', i.e. it does not depend explicitly on d, which could be infinite. And we are effectively doing regression in a large (potentially) infinite dimensional space.

Proof. The $\lambda=0$ case follows directly from the previous lemma. Using that $(a+b)^{2} \geq 2 a b$, we can bound the variance term for general λ as follows:

$$
\frac{1}{n} \sum_{j}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2} \leq \frac{1}{n} \sum_{j} \frac{\lambda_{j}^{2}}{2 \lambda_{j} \lambda}=\frac{\sum_{j} \lambda_{j}}{2 n \lambda}
$$

Again, using that $(a+b)^{2} \geq 2 a b$, the bias term is bounded as:

$$
\sum_{j}\left(w_{*}\right)_{j}^{2} \frac{\lambda_{j}}{\left(1+\lambda_{j} / \lambda\right)^{2}} \leq \sum_{j}\left(w_{*}\right)_{j}^{2} \frac{\lambda_{j}}{2 \lambda_{j} / \lambda}=\frac{\lambda}{2}\left\|w_{*}\right\|^{2}
$$

So we have that:

$$
R\left(\hat{w}_{\lambda}\right) \leq \frac{\|\Sigma\|_{\text {trace }}}{2 n \lambda}+\frac{\lambda}{2}\left\|w_{*}\right\|^{2}
$$

and using the choice of λ completes the proof.

