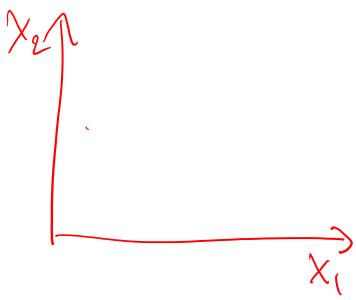
Decision Trees

Machine Learning – CSE546
Carlos Guestrin (by Sameer Singh)
University of Washington
October 13, 2015

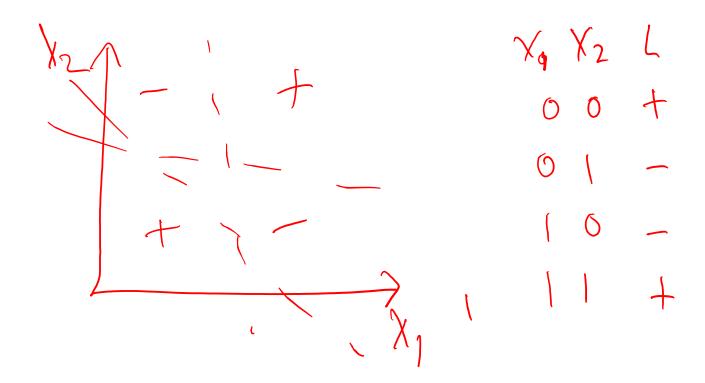
Linear separability

- A dataset is linearly separable iff there exists a separating hyperplane:
 - □ Exists **w**, such that:
 - $w_0 + \sum_i w_i x_i > 0$; if $\mathbf{x} = \{x_1, \dots, x_k\}$ is a positive example
 - $w_0 + \sum_i w_i x_i < 0$; if $\mathbf{x} = \{x_1, \dots, x_k\}$ is a negative example



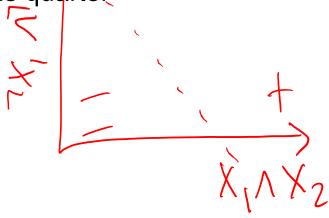
Not linearly separable data

Some datasets are not linearly separable!



Addressing non-linearly separable data – Option 1, non-linear features

- Choose non-linear features, e.g.,
 - □ Typical linear features: $w_0 + \sum_i w_i x_i$
 - □ Example of non-linear features:
 - Degree 2 polynomials, $w_0 + \sum_i w_i x_i + \sum_{ij} w_{ij} x_i x_j$
- Classifier h_w(x) still linear in parameters w
 - ☐ As easy to learn
 - □ Data is linearly separable in higher dimensional spaces
 - ☐ More discussion later this quarter



Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier $h_{\mathbf{w}}(\mathbf{x})$ that is non-linear in parameters \mathbf{w} , e.g.,
 - □ Decision trees, boosting, nearest neighbor, neural networks...
- More general than linear classifiers
- But, can often be harder to learn (non-convex/concave optimization required)
- But, but, often very useful
- (BTW. Later this quarter, we'll see that these options are not that different)

A small dataset: Miles Per Gallon

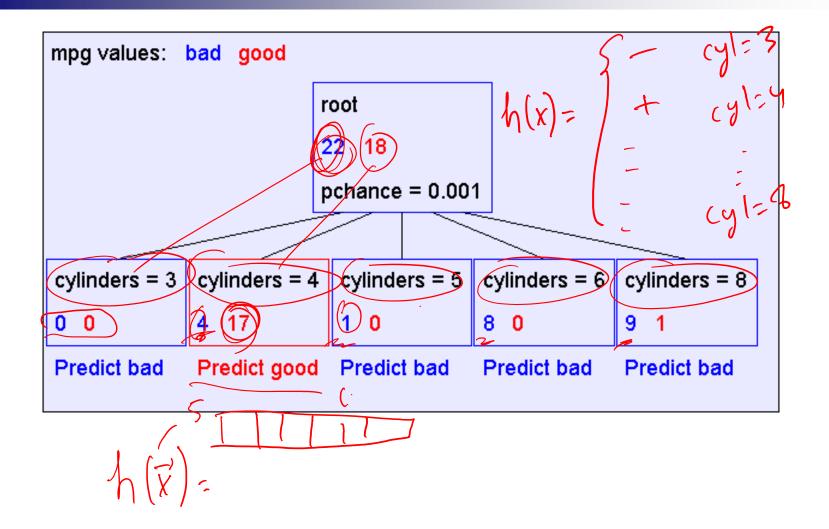
Suppose we want to predict MPG

			4				
		₩					
mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	1:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good		high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good		low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good		low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

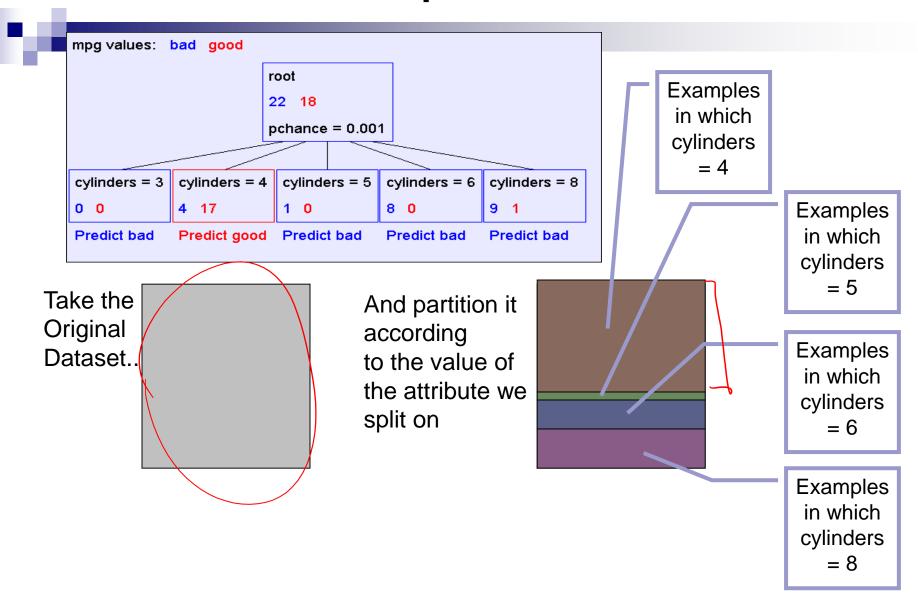
40 training examples

From the UCI repository (thanks to Ross Quinlan)

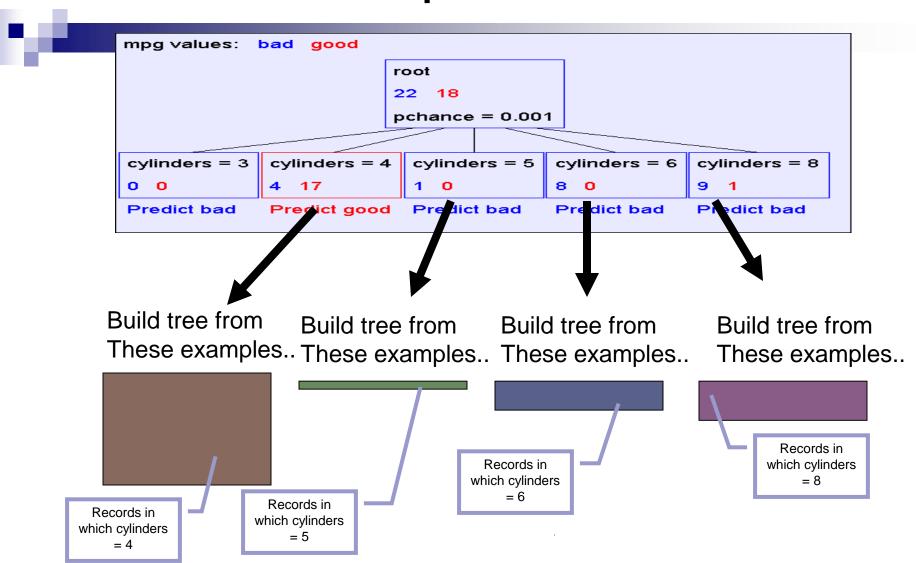
A Decision Stump



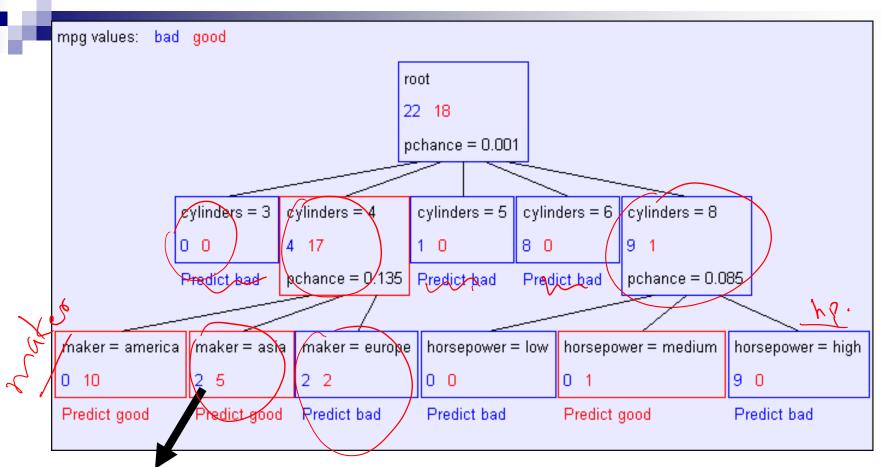
Recursion Step



Recursion Step

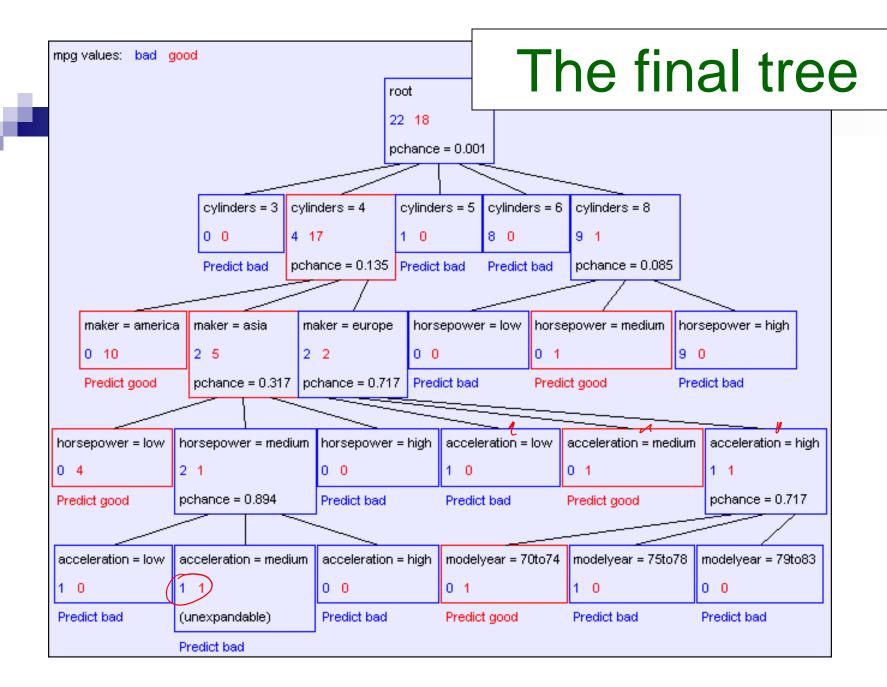


Second level of tree



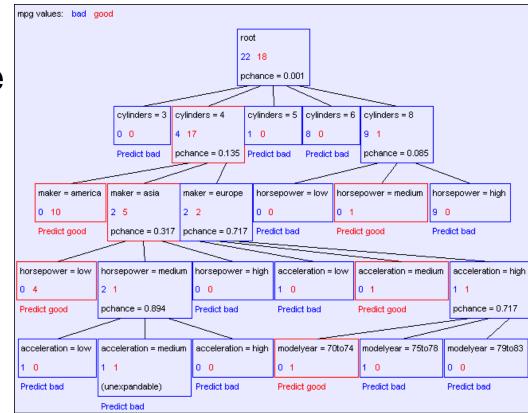
Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)



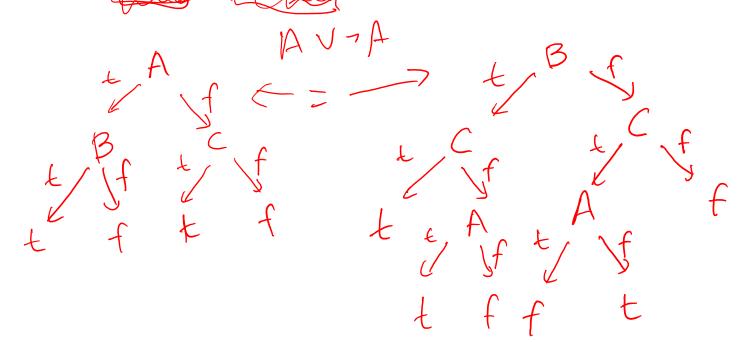
Classification of a new example

 Classifying a test example – traverse tree and report leaf label



Are all decision trees equal?

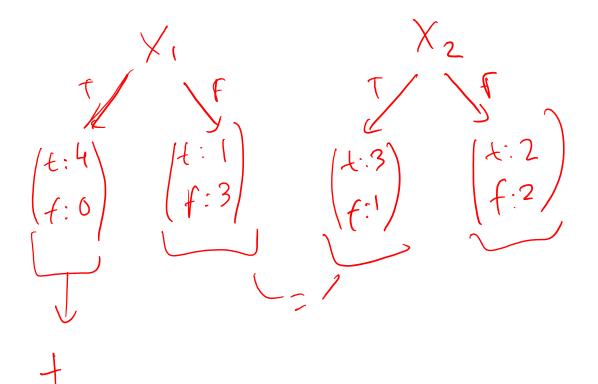
- Many trees can represent the same concept
- But, not all trees will have the same size!
 - \Box e.g., $\phi = A \land B \lor \neg A \land C$ ((A and B) or (not A and C))

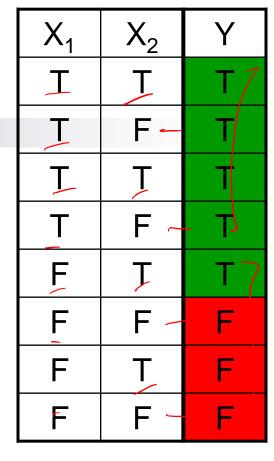


Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - □ Start from empty decision tree
 - □ Split on next best attribute (feature)
 - □ Recurse

Choosing a good attribute



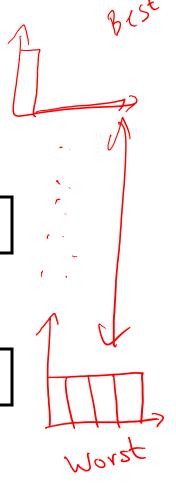


Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad

$$P(Y=A) = 1/2$$
 $P(Y=B) = 1/4$ $P(Y=C) = 1/8$ $P(Y=D) = 1/8$

$$P(Y=A) = 1/4$$
 $P(Y=B) = 1/4$ $P(Y=C) = 1/4$ $P(Y=D) = 1/4$



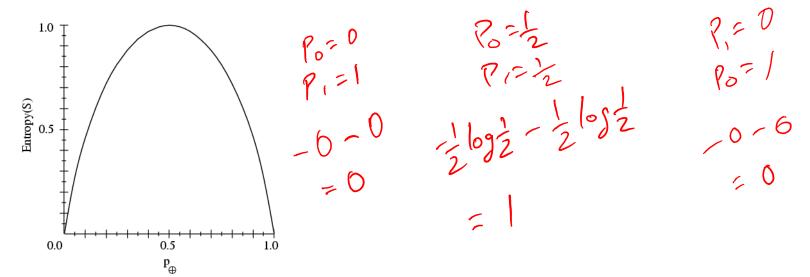
Entropy

Entropy H(Y) of a random variable $Y = \{Y_1 | Y_2 \dots Y_k \}$

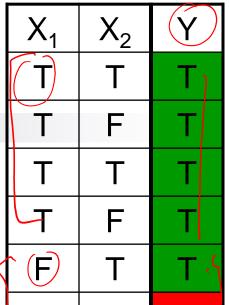
$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)



Information gain



- Advantage of attribute decrease in uncertainty
 - □ Entropy of Y before you split

 ≥ log = 0.65
 - □ Entropy after split
 - Weight by probability of following each branch, i.e., normalized number of records

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

$$H(Y \mid X) = -\frac{4}{6} \left(0 \right) - \frac{2}{6} \left(-1 \right) = \frac{3}{3}$$

Information gain is difference $IG(X) = H(Y) - H(Y \mid X)$ $IG(X_I) = 0.65 - \frac{1}{2} = 0.32$

Learning decision trees

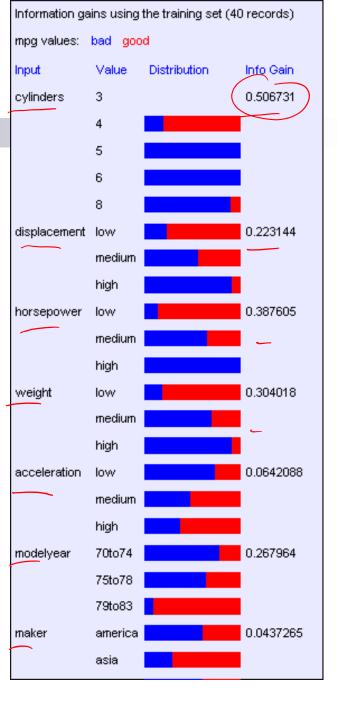
- Start from empty decision tree
- Split on next best attribute (feature)
 - □ Use, for example, information gain to select attribute
 - \square Split on arg max $IG(X_i) = \arg\max_i H(Y) H(Y \mid X_i)$

Recurse when do I stop?

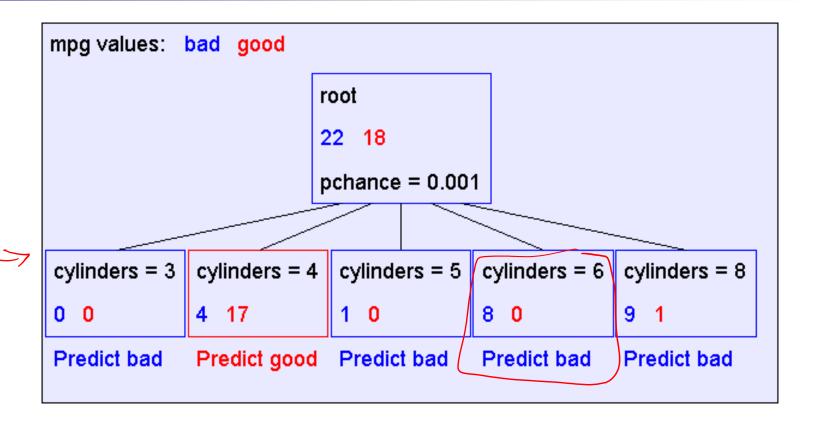
- 1) Entropy is 6 > prodict the label 2) Cannot split >> no feats helping
- 3) info gain is o (samall)

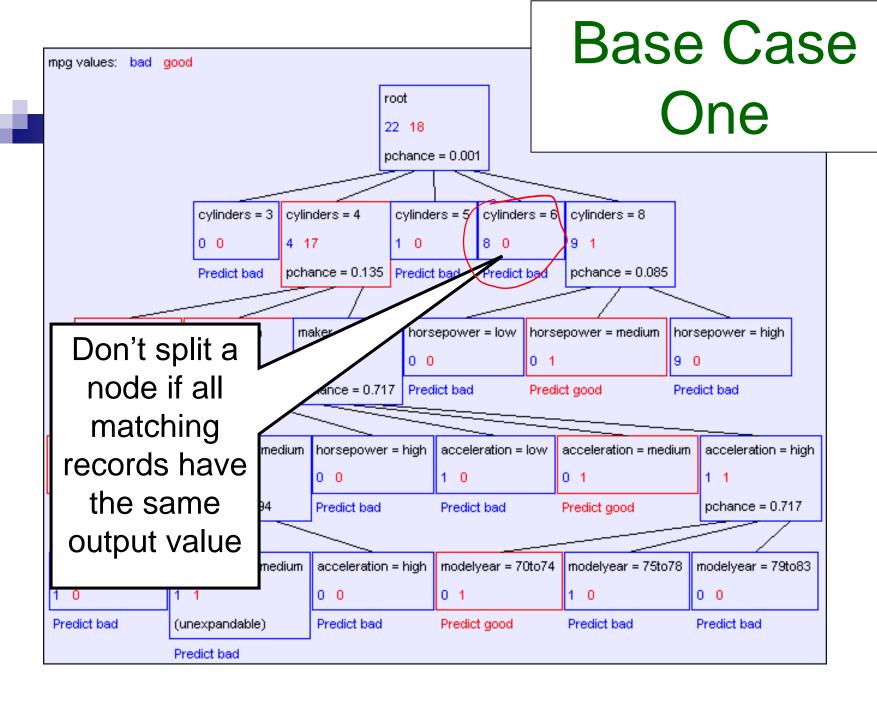
Suppose we want to predict MPG

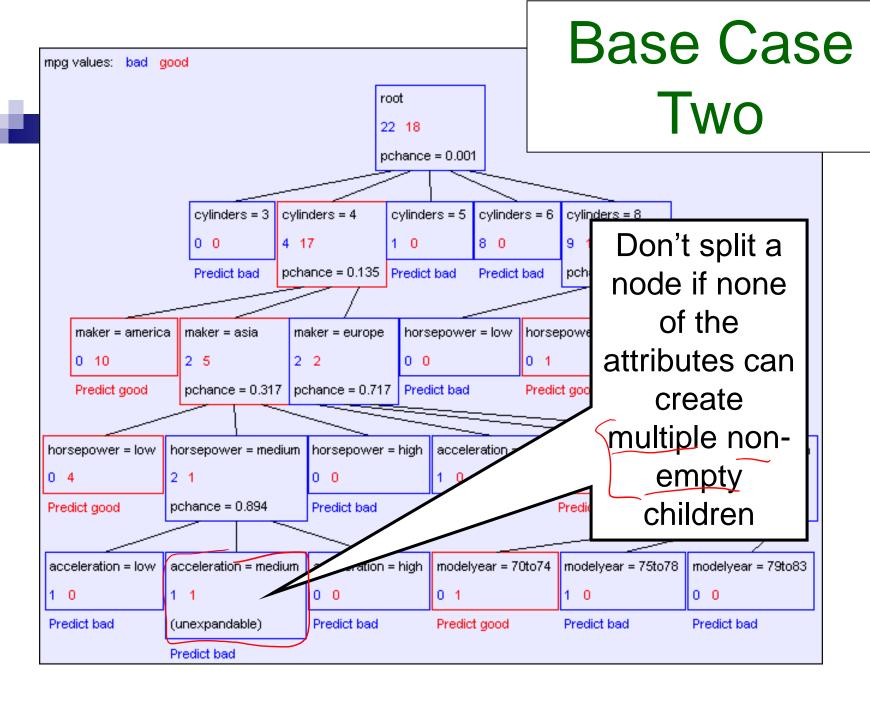
Look at all the information gains...

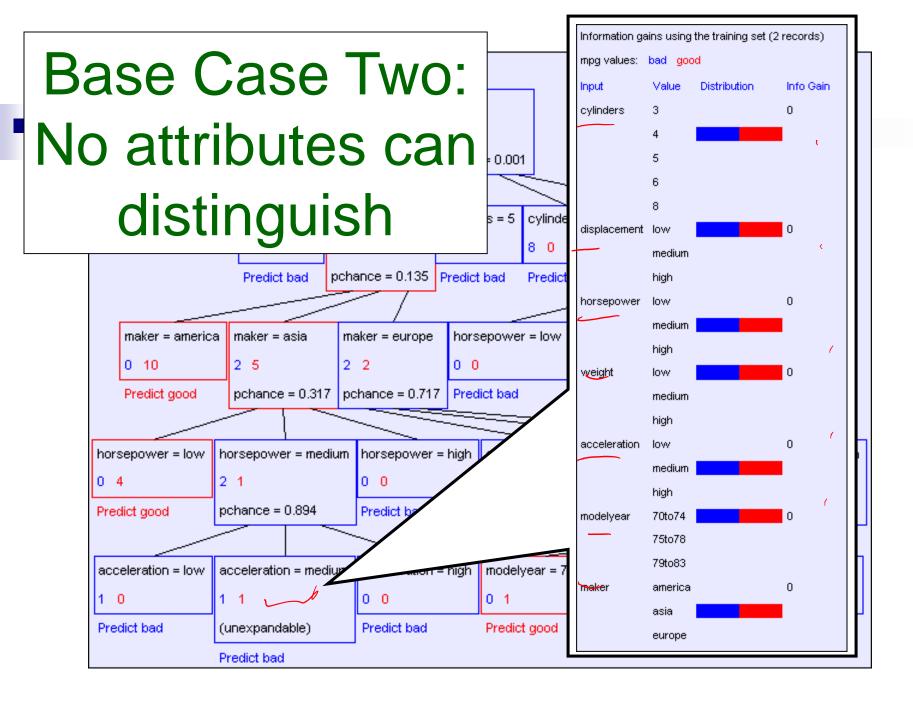


A Decision Stump







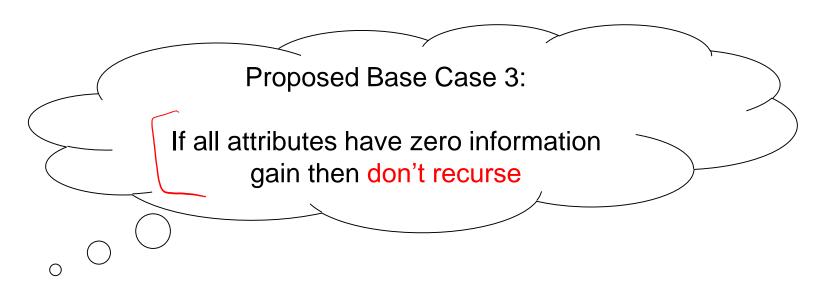


Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

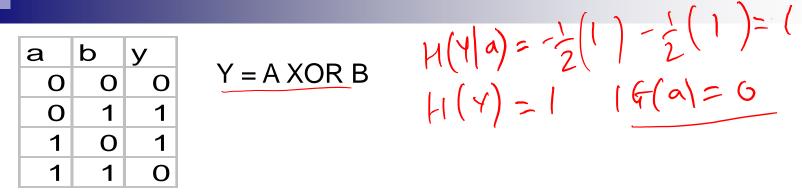
Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

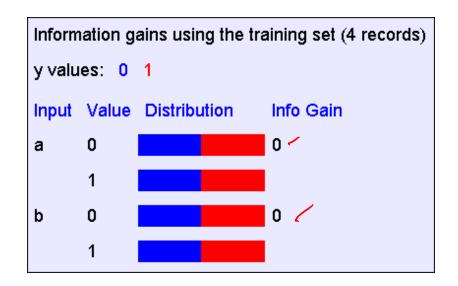


•Is this a good idea?

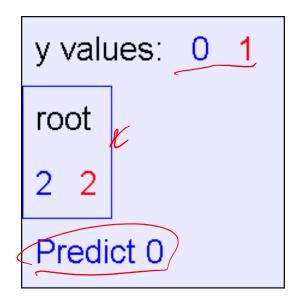
The problem with Base Case 3



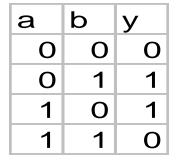
The information gains:



The resulting bad decision tree:

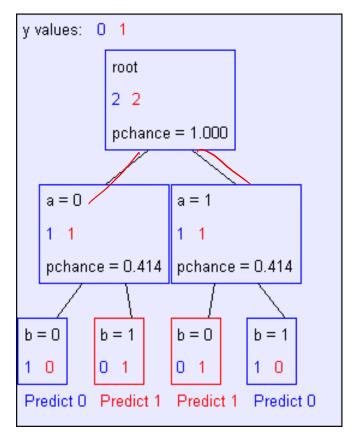


If we omit Base Case 3:



$$y = a XOR b$$

The resulting decision tree:



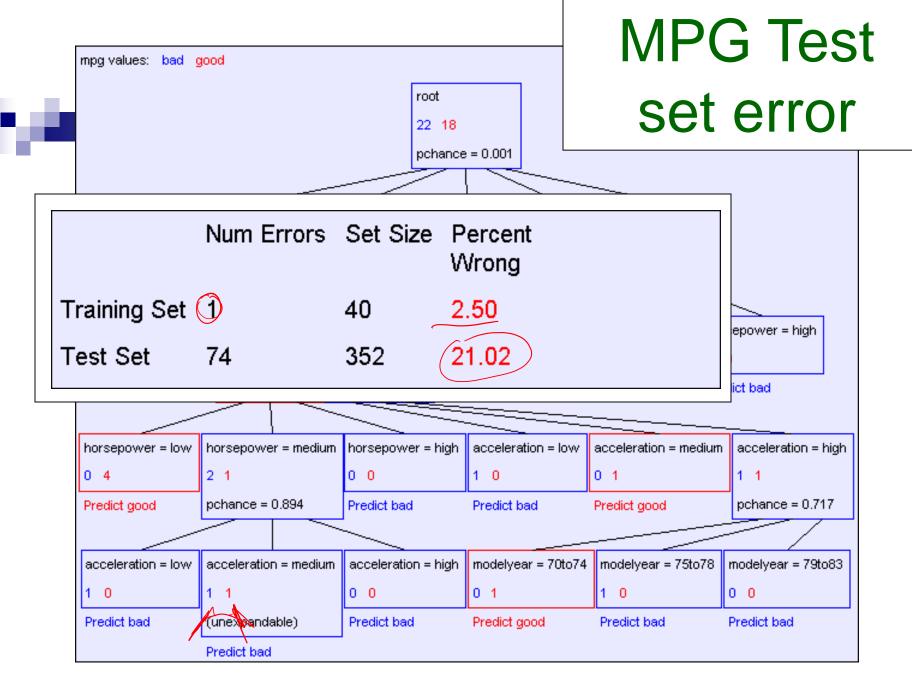
Basic Decision Tree Building Summarized

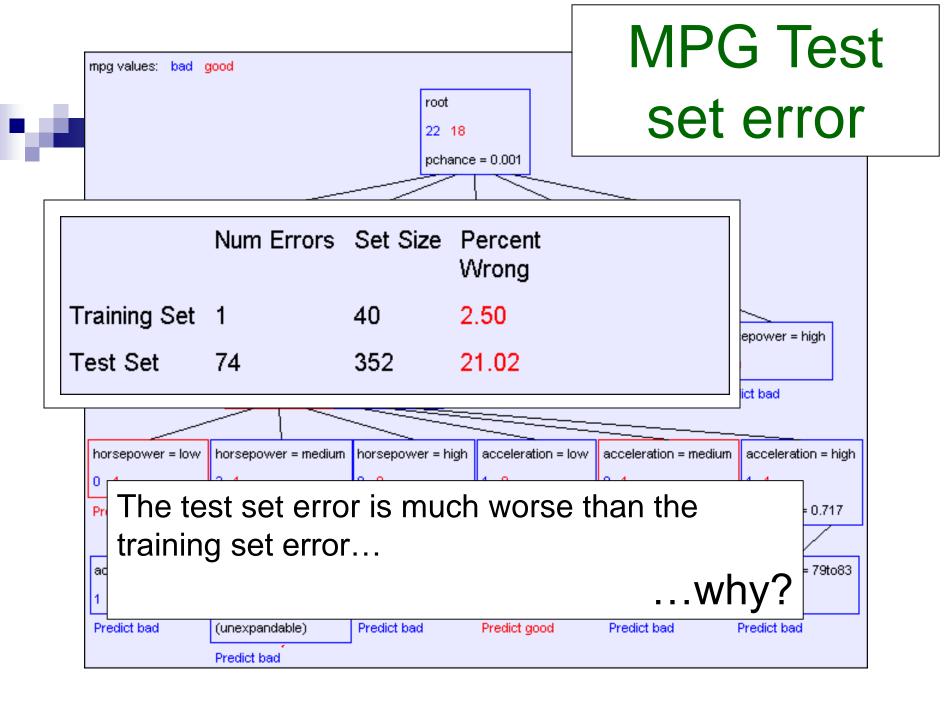
BuildTree(*DataSet,Output*)

- If all output values are the same in *DataSet*, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has (n_X) distinct values (i.e. X has arity n_X).
 - \square Create and return a non-leaf node with n_{\times} children.
 - ☐ The *i*th child should be built by calling

BuildTree(DS, Output)

Where $D\hat{S}_i$ built consists of all those records in DataSet for which X = ith distinct value of X.





Decision trees & Learning Bias

No label noise $X_1 \times_2 Y_1 Y_2 \xrightarrow{\zeta.t.}$ $X_1 = X_2 \wedge Y_1 + Y_2$

mpg	Cymiacis	displacement	Holocpowel	weignt	acceleration	inoucity cui	marci
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

mpg cylinders displacement horsepower weight

then
Decision Tress obtain 0 taining error

+ Fits the bias

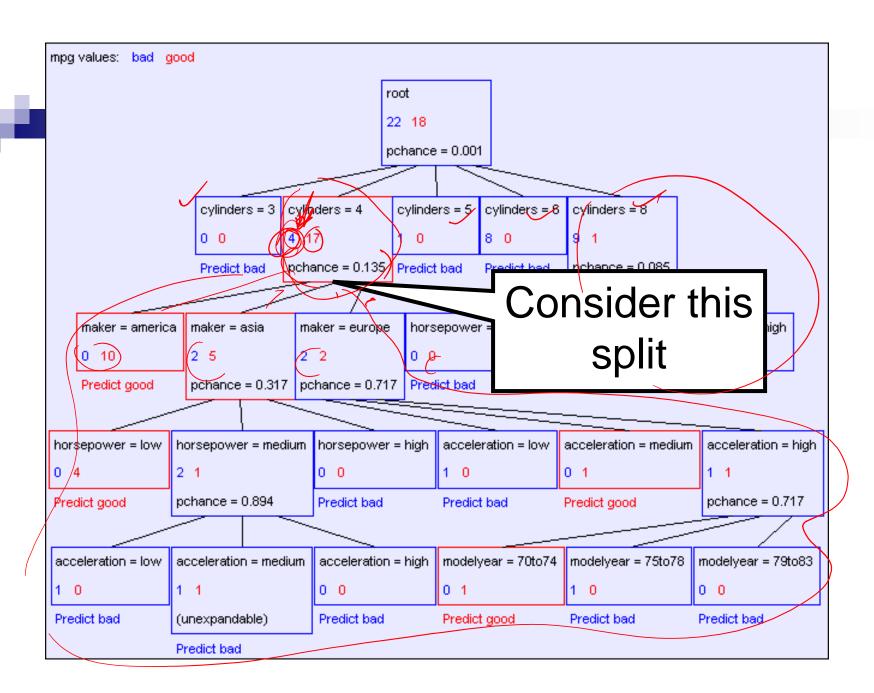
- high variance

Decision trees will overfit

- □ Training set error is always zero!
 - (If there is no label noise)
- □ Lots of variance
- □ Will definitely overfit!!!
- Must bias towards simpler trees

Many strategies for picking simpler trees:

- ☐ Fixed depth
- d= 3,7...
- □ Fixed number of leaves
- W= 10,20
- □ Or something smarter...



A chi-square test

- Suppose that MPG was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

A chi-square test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 7.2%

(Such simple hypothesis tests are very easy to compute, unfortunately, not enough time to cover in the lecture, but see readings...)

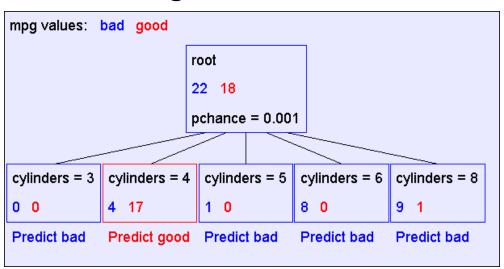
Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - □ Beginning at the bottom of the tree, delete splits in which p_{chance} > MaxPchance
 - Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

Pruning example

■ With MaxPchance = 0.1, you will see the following MPG decision tree:

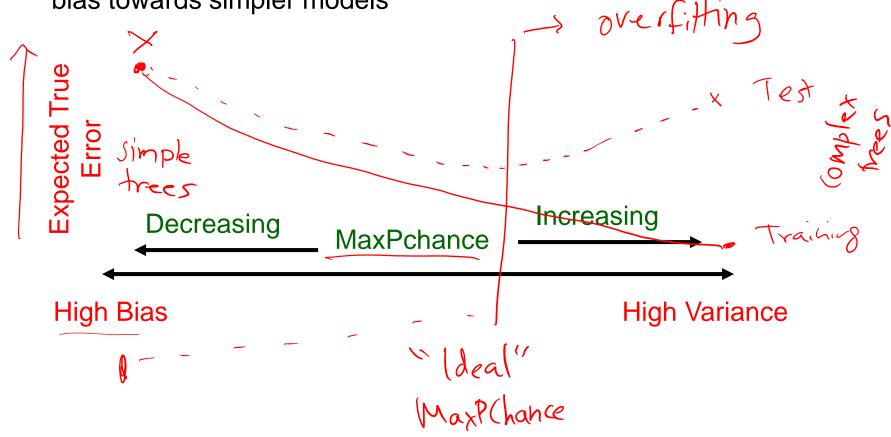


Note the improved test set accuracy compared with the unpruned tree

	Num Errors	Set Size	Percent Wrong	
Training Set	5	40	12.50 > 2.5	
Test Set	56	352	15.91 ∠ 2₹	

MaxPchance

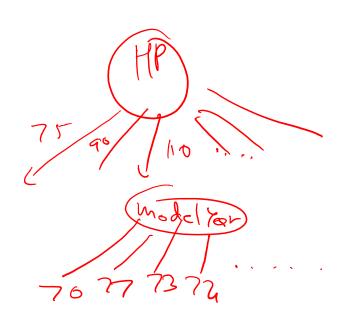
 Technical note MaxPchance is a regularization parameter that helps us bias towards simpler models



Real-Valued inputs

What should we do if some of the inputs are real-valued?

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
	<u> </u>						
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

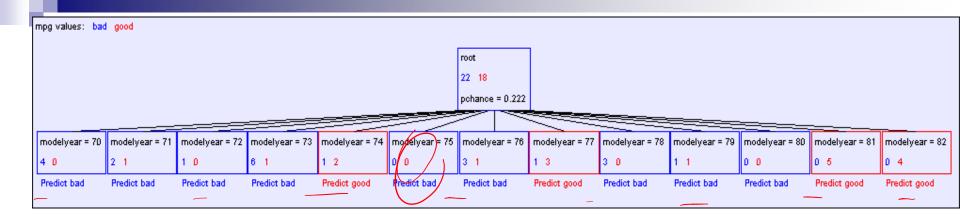


Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value

"One branch for each numeric value" idea:

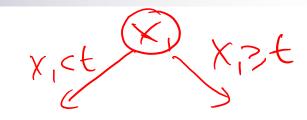


Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

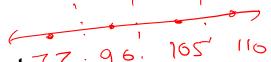
□ One branch: X_i < t

 \square Other branch: $X_i \ge \hat{t}$

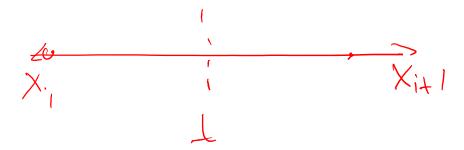


Choosing threshold split

- One branch: X_i < t
- Other branch: $X_i \ge t$
- Search through possible values of t
 - Seems hard!!!



- But only finite number of t's are important 77.96. 165
 - Sort data according to X_i into $\{x_1, ..., x_m\}$
 - Consider split points of the form $x_a + (x_{a+1} x_a)/2$

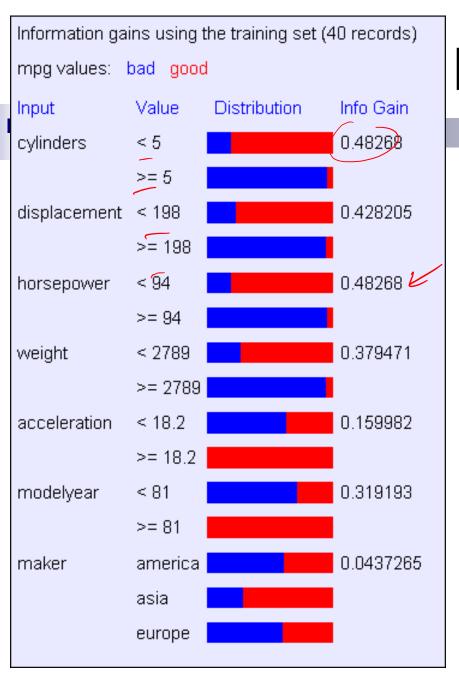


A better idea: thresholded splits

- Define $IG(Y|X_i:t)$ as $H(Y) H(Y|X_i:t)$ Define $H(Y|X_i:t) =$

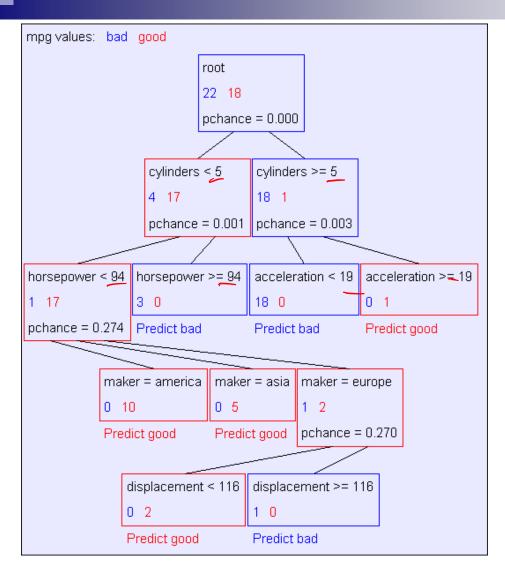
$$H(Y|X_i < t) P(X_i < t) + H(Y|X_i >= t) P(X_i >= t)$$

- $(N \setminus IG(Y|X_i:t))$ is the information gain for predicting Y if all you know is whether X_i is greater than or less than t
 - Then define $IG^*(Y|X_i) = max_t IG(Y|X_i:t)$
 - For each real-valued attribute, use IG*(Y|X;) for assessing its suitability as a split
 - Note, may split on an attribute multiple times, with different thresholds



Example with MPG

Example tree using reals



What you need to know about decision trees

- Decision trees are one of the most popular data mining tools
 - Easy to understand ____
 - Easy to implement
 - □ Easy to use
 - □ Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - □ Zero bias classifier → Lots of variance
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials