
CSE 546: Machine Learning Lecture 18

Concentration and ERM

Instructor: Sham Kakade

1 Chernoff and Hoeffding Bounds

Theorem 1.1. Let Z1, Z2, . . . Zm be m i.i.d. random variables with Zi ∈ [a, b] (with probability one). Then for all
ε > 0 we have:

P

(
1

m

m∑
i=1

Zi − E [Z] > ε

)
≤ e−

2mε2

(b−a)2

The union bound states that for events C1, C2, · · ·Cm we have:

P (C1 ∪ C2 . . . ∪ Cm) ≤
m∑
i=1

P (Ci)

which holds for all events. If the events are Ci exclusive, then we have equality:

P (C1 ∪ C2 . . . ∪ Cm) =

m∑
i=1

P (Ci)

Typically, the union bound introduces much slop into our bounds (though it is used often as understanding dependen-
cies is often tricky).

2 Empirical Risk Minimization (ERM)

Suppose we have a training data set (X1, Y1), . . . , (Xm, Ym) consisting of independent and identically distributed
random variable pairs from an unknown probability distribution.

For any hypothesis f ∈ F , we know that φ(f(Xi), Yi) is an unbiased estimate of the risk Lφ(f). Hence, we know
that:

L̂φ(f) =
1

m

m∑
i=1

φ(f(Xi), Yi)

is also an unbiased estimate of Lφ(f).

The ERM algorithm is to choose the hypothesis which minimizes this empirical risk, i.e.

f̂ = argminf∈F
1

m

m∑
i=1

φ(f(Xi), Yi)

Two central questions are in bounding
|Lφ(f)− L̂φ(f̂)| ≤??
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and
Lφ(f̂)− Lφ(f∗) ≤??

The former is how much our estimate differs from the best. The latter is how close the risk of our hypothesis is to that
of the optimal hypothesis.

3 Generalization Bounds for the Finite Case

Now let us consider the case where F is finite and the loss is bounded in [0, 1]

Here we have that:

P

(
sup
f∈F

∣∣∣L̂φ(f)− Lφ(f)∣∣∣ ≥ ε) = P
(
∃f ∈ F s.t. |L(f)− L̂(f)| ≥ ε

)
≤

∑
f∈F

P
(
|L(f)− L̂(f)| ≥ ε

)
≤ 2|F|e−2mε

2

Now if we apriori choose

ε =

√
log 2|F|+ log 1

δ

2m

then we have

P

sup
f∈F

∣∣∣L̂φ(f)− Lφ(f)∣∣∣ ≥
√

log 2|F|+ log 1
δ

2m

 ≤ δ
Equivalently, this says that with probability greater than 1− δ, for all f ∈ F

∣∣∣L̂φ(f)− Lφ(f)∣∣∣ ≤
√

log 2|F|+ log 1
δ

2m

which is a uniform convergence statement. And this implies the following performance bound of ERM:

Lφ(f̂) ≤ Lφ(f∗) + 2

√
log 2|F|+ log 1

δ

2m

Note the logarithmic dependence on the size of the hypothesis class.

4 Occam’s Razor Bound

Now consider partitioning the error probability δ to each f ∈ F . In particular, assume we have specified a δf for each
f ∈ F such that: ∑

f∈F

δf ≤ δ

The following theorem is referred to as the “Occam’s Razor Bound”
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Theorem 4.1. Equivalently, this says that with probability greater than 1− δ, for all f ∈ F

∣∣∣L̂φ(f)− Lφ(f)∣∣∣ ≤
√

log 2
δf

2m

which is a uniform convergence statement.

Proof. Define:

εf =

√
log 2

δf

2m

We have that:

P
(
∃f ∈ F s.t. |L(f)− L̂(f)| ≥ εf

)
≤

∑
f∈F

P
(
|L(f)− L̂(f)| ≥ εf

)
≤

∑
f∈F

2e−2mε
2
f

=
∑
f∈F

δf

≤ δ

which completes the proof.
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