CSE 546: Machine Learning Lecture 18

Concentration and ERM

Instructor: Sham Kakade

1 Chernoff and Hoeffding Bounds

Theorem 1.1. Let 71, Zs, ... Z,, be m i.i.d. random variables with Z; € [a,b] (with probability one). Then for all

€ > 0 we have:
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The union bound states that for events C, Cs, - - - C,,, we have:
P(C1UC,...UCy) <Y P(Ci)
i=1

which holds for all events. If the events are C; exclusive, then we have equality:

m

P(C1UCy...UCy) =Y P(C))
=1

Typically, the union bound introduces much slop into our bounds (though it is used often as understanding dependen-
cies is often tricky).

2 Empirical Risk Minimization (ERM)

Suppose we have a training data set (X1,Y7),. .., (X, Ys,) consisting of independent and identically distributed
random variable pairs from an unknown probability distribution.

For any hypothesis f € F, we know that ¢(f(X;),Y;) is an unbiased estimate of the risk L4 (f). Hence, we know
that:

is also an unbiased estimate of Ly (f).

The ERM algorithm is to choose the hypothesis which minimizes this empirical risk, i.e.
. ) 1 m
f = argmingcz—> 6(£(Xi), Vi)
i=1

Two central questions are in bounding o
(Lo (f) = Lo ()] <77



and

Lo(f) = Lo(f7) <77

The former is how much our estimate differs from the best. The latter is how close the risk of our hypothesis is to that
of the optimal hypothesis.

3 Generalization Bounds for the Finite Case

Now let us consider the case where F is finite and the loss is bounded in [0, 1]

Here we have that:
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fer

IA

> P (L) - L =)

feF
< 2|F|eme

B log 2| F]| +10g%
£ 2m

log 2| F| + log %
2m

Now if we apriori choose

then we have

P sup|Lo(f) - Lo(f)| =
feF

Equivalently, this says that with probability greater than 1 — §, for all f € F

log 2| F| + log %
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[La(h) = Lol)] <

which is a uniform convergence statement. And this implies the following performance bound of ERM:

N . log 2| F| + log +
Lo(f) < L(r) + 2y 22T o8

Note the logarithmic dependence on the size of the hypothesis class.

4 Occam’s Razor Bound

Now consider partitioning the error probability ¢ to each f € F. In particular, assume we have specified a § ; for each

f € F such that:
> 6p<s
fer

The following theorem is referred to as the “Occam’s Razor Bound”



Theorem 4.1. Equivalently, this says that with probability greater than 1 — 9, for all f € F

log %
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|Lo(f) ~ Lo(f)] <
which is a uniform convergence statement.

Proof. Define:
log%
o= 2m

‘We have that:
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which completes the proof.



