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Announcements:
B
m HW4 posted

m Poster Session Thurs, Dec 8
TAs (or your CSE friends) can help with printing

m Today:
Review: Deep Learning
Convolutional Neural Nets (+ RNNs?)
Start: RL
Also: MusicNet is out!



Poster Session
=

m  Thursday Dec 8, 9-11:30am
Please arrive 20 mins early to set up
Everyone is expected to attend
Prepare a poster
We provide poster board and pins
Both one large poster (recommended) and several pinned pages are OK.
m  Capture
Problem you are solving
Data you used
ML methodology
Results 1‘/\,\"‘4 S ¢ g o~
n Prep%g %ﬂzﬂﬁ#ﬁﬁ%&eeeh about your project
= Two instructors will visit your poster separately
m  Project Grading: scope, depth, data
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Review

Machine Learning — CSE4546
Sham Kakade

University of Washington
December 1, 2016

©Sham Kakade 4



Hidden layer sl

ot
m 1-hidden layer: &L et

e
out(x) = g|wo+ > wrg(wg+ > wiz;)
k 7

oyt
O

O
ot

& /;7L

. O

6

6

6

©Sham Kakade

Forward propagation for 1-hidden
layer - Prediction

m 1-hidden layer:
out(x) = g (’wO + Zwkg(w‘é + Z’wfﬁ'»'z))
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Gradient descent for 1-hidden layer —

_Back-ﬁroEagation: Computing *™
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Gradient descent for 1-hidden layer —

Back-EroEagatlon Computing %7

5 Dropped w, to make derivation simpler
(W) = - Z[y — out(x)]
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Theory, Optimization, and

Debugging

Machine Learning — CSE4546
Sham Kakade
University of Washington

December. 1, 2016

Architecture Selection
" JE

m Feed-forward nets
These are fully interconnected nets
Try wider nets
(empirical question) When do deeper nets help?
(empirical question) Do feed-forward nets perform
better than random features?

m Structured Nets

ConvNets are a great idea

= Some idea of how to choose architecture
Recurrent nets

m Architecture chosen optimization
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Optimization Issues
" JE
m |nitialization
Want non-zero gradients
Init with a ‘sensitivity analysis’

Want to start with a point not to far from to some local
opt

m Needs lots of Training data?

m Learning rates
Set by hand
Turn down when learning slows down

m Tensor Flow Defaults?

©Sham Kakade 1"

Regularization
" JE
m Needs lots of Training data?

Sometimes
(briefly) Share MusicNet case study

m Regularization (sometimes important?)

L27? < o
Dropout? 7 resy semlas
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“Theory? W& W= Llw)

" J
m L(w) is out total loss on N data points
= Suppose L(w) is R-smooth ~ (<~A L ¢ >
m Let’s do batch gradient descent. 7~ ”/4/1
m What can we say?

Lo W s DLz ¢
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Convolutional Neural Networks &

Application to Computer Vision
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Contains slides from...
= JEE

m LeCun & Ranzato

m Russ Salakhutdinov

m Honglak Lee
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Neural Networks in Computer Vision
" J

m Neural nets have made an amazing come back
Used to engineer high-level features of images

m Image features:



Some hand-created image
features
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Scanning an image with a

m Detector = Classifier from image patches:

m Typically scan image with detector:

©Sham Kakade 18



Using neural nets to learn

. lgp:linear features

ion

Low-Level Mid-Level High-Level Trainable
—_ —_ _—
Feature Feature Feature Qassifier
A\

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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But, many tricks needed to work well...

"
C1 Layer C2 Layer
Input Image X

el ——

i TN

Convolutions Max Pooling

Convolutions Max Pooling

Feature Extraction ®(x)
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Convolution Layer

"
M Example: 200x200 image
b Fully-connected, 400,000 hidden units = 16 billion parameters
» Locally-connected, 400,000 hidden units 10x10 fields = 40

million params
b Local connections capture local dependencies
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Parameter sharing

m Fundamental technique used throughout ML
m Neural net without parameter sharing:

( '/m///e ML’VLJXSA

(4 >
1% >
m Sharing parameters: comve —A G 5 '
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Pooling/Subsampling

m Convolutions act like detectors:

m But we don’t expect true detections in every patch
m Pooling/subsampling nodes:
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Example neural net architecture
B B

Layer 3
256(@6x6 Layer 4

256@1x1  Qutput

101

Layer 1
, 64x75X75 Layer 2
Input 64@]14x14
83x83

9x9

9 ) 10x10 pooling,  convolution 6x6 pooling
convolution x5 subsampling (4096 kernels)
(64 kernels) 4x4 subsamp
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Sample results
" NN

# Traffic Sign Recognition ( GTSRB) # House Number Recognition (Google)

» German Traffic Sign Reco » Street View House Numbers

Bench
» 94.3 % accuracy

O] O N 18
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» 99.2% accuracy

»
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Example from Krizhevsky, Sutskever, Hinton 2012
" NN
4 Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops

4M [ FULL CONNECT | 4Mflop

16M | FULL 4096/ReLU 16M
37M | FULL 4096/RelLU 37M

| MAX POOLING |

442< | CONV3x3/ReLU 256fm | 7oy

sos | CONVXIRGLU 384t | 12

MAX POOLING 2x2sub
307< | CONV11x11/ReLU 256fm | 23

|  MAXPOOL2x2sub |

35k [[TCONVATXA1/RELU 86fm ] 1051
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Results by Krizhevsky, Sutskever, Hinton 2012

# ImageNet Large Scale Visual Recognition Challenge
#1000 categories, 1.5 Million labeled training samples

TASK 1- CLASSIFICATION TASK2 - DETECTION
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mite container ship motor scooter

mite i ship motor scooter leapard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
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grillie musnroom cherry adagascar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engi dead-man's-fingers currant howler monkey
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RNNs and LSTMs
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