Homework #0

CSE 546: Machine Learning Prof. Kevin Jamieson Due: 10/5 11:59 PM

1 Analysis

1. [1 points] Let A and B be two $\mathbb{R}^{n \times n}$ symmetric matrices. Suppose A and B have the exact same set of eigenvectors u_1, u_2, \dots, u_n with the corresponding eigenvalues $\alpha_1, \alpha_2, \dots, \alpha_n$ for A, and $\beta_1, \beta_2, \dots, \beta_n$ for B. Please write down the eigenvectors and their corresponding eigenvalues for the following matrices:

- C = A + B
- D = A B
- E = AB
- $F = A^{-1}B$ (assume A is invertible)
- 2. [1 points] A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive-semidefinite (PSD) if $x^T \mathbf{A} x \ge 0$ for all $x \in \mathbb{R}^n$.
 - a. For any $y \in \mathbb{R}^n$, show that yy^T is PSD.
 - b. Let X be a random vector in \mathbb{R}^n with covariance matrix $\Sigma = \mathbb{E}[(X \mathbb{E}X)(X \mathbb{E}X)^T]$. Show that Σ is PSD.
 - c. Assume A is a symmetric matrix so that $A = U \operatorname{diag}(\alpha) U^T$ where $\operatorname{diag}(\alpha)$ is an all zeros matrix with the entries of α on the diagonal and $U^T U = I$. Show that A is PSD if and only if $\min_i \alpha_i \ge 0$. (Hint: compute $x^T A x$ and consider values of x proportional to the columns of U, i.e., the orthonormal eigenvectors).

3. [1 points] For any $x \in \mathbb{R}^n$, define the following norms: $||x||_1 = \sum_{i=1}^n |x_i|$, $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$, $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$. Show that $||x||_{\infty} \le ||x||_2 \le ||x||_1$.

4. [1 points] For some $a, b, c, d \in \mathbb{R}$, let $f(x, y) = ax^2 + bxy + c + \frac{e^{dx}}{x}$. What is $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$?

5. [1 points] For possibly non-symmetric $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}$, let $f(x, y) = x^T \boldsymbol{A} x + y^T \boldsymbol{B} x + c$. Define $\nabla_z f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial z_1} & \frac{\partial f(x, y)}{\partial z_2} & \dots & \frac{\partial f(x, y)}{\partial z_n} \end{bmatrix}^T$. What is $\nabla_x f(x, y)$ and $\nabla_y f(x, y)$?

6. [1 points] Consider the following joint distribution between X and Y: What is $\mathbb{P}(X = T | Y = b)$?

$\mathbb{P}(X,Y)$		Y		
		a	b	С
X	Т	0.2	0.1	0.2
Λ	F	0.05	0.15	0.3

7. [1 points] A random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ is Gaussian distributed with mean μ and variance σ^2 . Given that for any $a, b \in \mathbb{R}$, we have that Y = aX + b is also Gaussian, find a, b such that $Y \sim \mathcal{N}(0, 1)$.

8. [1 points] If f(x) is a PDF, we define the cumulative distribution function (CDF) as $F(x) = \int_{-\infty}^{x} f(y) dy$. For any function $g : \mathbb{R} \to \mathbb{R}$ and random variable X with PDF f(x), define the expected value of g(X) as $\mathbb{E}[g(X)] = \int_{\infty}^{\infty} g(y)f(y) dy$. For a boolean event A, define $\mathbf{1}\{A\}$ as 1 if A is true, and 0 otherwise. Thus, $\mathbf{1}\{x \leq a\}$ is 1 whenever $x \leq a$ and 0 whenever x > a. Note that $F(x) = \mathbb{E}[\mathbf{1}\{X \leq x\}]$. Let X_1, \ldots, X_n be independent and identically distributed random variables with CDF F(x). Define $\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{X_i \leq x\}$.

- a. For any x, what is $\mathbb{E}[\widehat{F}_n(x)]$?
- b. For any x, show that $\mathbb{E}[(\widehat{F}_n(x) F(x))^2] = \frac{F(x)(1 F(x))}{n}$
- c. Using part b., show that $\sup_{x\in\mathbb{R}}\mathbb{E}[\left(\widehat{F}_n(x)-F(x)\right)^2]\leq \frac{1}{4n}.$

2 Programming

9. [2 points] Two random variables X and Y have equal distributions if their CDFs, F_X and F_Y , respectively, are equal: $\sup_x |F_X(x) - F_Y(x)| = 0$. The central limit theorem says that the sum of k independent, zero-mean, variance-1/k random variables converges to a Gaussian distribution as k goes off to infinity. We will study this phenomenon empirically (you will use the Python packages Numpy and Matplotlib). Define $Y^{(k)} = \frac{1}{\sqrt{k}} \sum_{i=1}^{k} B_i$ where each B_i is equal to -1 and 1 with equal probability. It is easy to verify (you should) that $\frac{1}{\sqrt{k}}B_i$ is zero-mean and has variance 1/k.

- a. For i = 1, ..., n let $Z_i \sim \mathcal{N}(0, 1)$. If F(x) is the true CDF from which each Z_i is drawn (i.e., Gaussian) and $\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{Z_i \leq x\}$, use the homework problem above to choose n large enough such that $\sup_x \sqrt{\mathbb{E}[(\widehat{F}_n(x) - F(x))^2]} \leq 0.0025$, and plot $\widehat{F}_n(x)$ from -3 to 3. (Hint: use Z=numpy.random.randn(n) to generate the random variables, and import matplotlib.pyplot as plt; plt.step(sorted(Z), np.arange(1,n+1)/float(n)) to plot).
- b. For each $k \in \{1, 8, 64, 512\}$ generate *n* independent copies $Y^{(k)}$ and plot their empirical CDF on the same plot as part a. (Hint: you can use np.sum(np.sign(np.random.randn(n, k))*np.sqrt(1./k), axis=1) to generate *n* of the $Y^{(k)}$ random variables.)

Be sure to always label your axes. Your plot should look something like the following (Tip: checkout **seaborn** for instantly better looking plots.)

