Homework \#0

CSE 546: Machine Learning
Prof. Kevin Jamieson
Due: 10/5 11:59 PM

1 Analysis

1. [1 points] Let \boldsymbol{A} and \boldsymbol{B} be two $\mathbb{R}^{n \times n}$ symmetric matrices. Suppose \boldsymbol{A} and \boldsymbol{B} have the exact same set of eigenvectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{n}$ with the corresponding eigenvalues $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ for \boldsymbol{A}, and $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$ for \boldsymbol{B}. Please write down the eigenvectors and their corresponding eigenvalues for the following matrices:

- $\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}$
- $\boldsymbol{D}=\boldsymbol{A}-\boldsymbol{B}$
- $E=A B$
- $\boldsymbol{F}=\boldsymbol{A}^{-1} \boldsymbol{B}$ (assume \boldsymbol{A} is invertible)

2. [1 points] A symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is positive-semidefinite (PSD) if $x^{T} \boldsymbol{A} x \geq 0$ for all $x \in \mathbb{R}^{n}$.
a. For any $y \in \mathbb{R}^{n}$, show that $y y^{T}$ is PSD.
b. Let X be a random vector in \mathbb{R}^{n} with covariance matrix $\boldsymbol{\Sigma}=\mathbb{E}\left[(\boldsymbol{X}-\mathbb{E} \boldsymbol{X})(\boldsymbol{X}-\mathbb{E} \boldsymbol{X})^{\mathrm{T}}\right]$. Show that $\boldsymbol{\Sigma}$ is PSD.
c. Assume \boldsymbol{A} is a symmetric matrix so that $\boldsymbol{A}=\boldsymbol{U} \operatorname{diag}(\alpha) \boldsymbol{U}^{T}$ where $\operatorname{diag}(\alpha)$ is an all zeros matrix with the entries of α on the diagonal and $\boldsymbol{U}^{T} \boldsymbol{U}=I$. Show that \boldsymbol{A} is PSD if and only if $\min _{i} \alpha_{i} \geq 0$. (Hint: compute $x^{T} \boldsymbol{A} x$ and consider values of x proportional to the columns of \boldsymbol{U}, i.e., the orthonormal eigenvectors).
3. [1 points] For any $x \in \mathbb{R}^{n}$, define the following norms: $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|,\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}},\|x\|_{\infty}=$ $\max _{i=1, \ldots, n}\left|x_{i}\right|$. Show that $\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1}$.
4. [1 points] For some $a, b, c, d \in \mathbb{R}$, let $f(x, y)=a x^{2}+b x y+c+\frac{e^{d x}}{x}$. What is $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$?
5. [1 points] For possibly non-symmetric $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}$, let $f(x, y)=x^{T} \boldsymbol{A} x+y^{T} \boldsymbol{B} x+c$. Define $\nabla_{z} f(x, y)=\left[\begin{array}{llll}\frac{\partial f(x, y)}{\partial z_{1}} & \frac{\partial f(x, y)}{\partial z_{2}} & \ldots & \frac{\partial f(x, y)}{\partial z_{n}}\end{array}\right]^{T}$. What is $\nabla_{x} f(x, y)$ and $\nabla_{y} f(x, y) ?$
6. [1 points] Consider the following joint distribution between X and Y : What is $\mathbb{P}(X=T \mid Y=b)$?

$\mathbb{P}(X, Y)$		Y		
\mid		a	b	c
X	T	0.2	0.1	0.2
	F	0.05	0.15	0.3

7. [1 points] A random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is Gaussian distributed with mean μ and variance σ^{2}. Given that for any $a, b \in \mathbb{R}$, we have that $Y=a X+b$ is also Gaussian, find a, b such that $Y \sim \mathcal{N}(0,1)$.
8. [1 points] If $f(x)$ is a PDF, we define the cumulative distribution function (CDF) as $F(x)=\int_{-\infty}^{x} f(y) d y$. For any function $g: \mathbb{R} \mapsto \mathbb{R}$ and random variable X with PDF $f(x)$, define the expected value of $g(X)$ as $\mathbb{E}[g(X)]=\int_{\infty}^{\infty} g(y) f(y) d y$. For a boolean event A, define $\mathbf{1}\{A\}$ as 1 if A is true, and 0 otherwise. Thus,
$\mathbf{1}\{x \leq a\}$ is 1 whenever $x \leq a$ and 0 whenever $x>a$. Note that $F(x)=\mathbb{E}[\mathbf{1}\{X \leq x\}]$. Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables with CDF $F(x)$. Define $\widehat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{X_{i} \leq x\right\}$.
a. For any x, what is $\mathbb{E}\left[\widehat{F}_{n}(x)\right]$?
b. For any x, show that $\mathbb{E}\left[\left(\widehat{F}_{n}(x)-F(x)\right)^{2}\right]=\frac{F(x)(1-F(x))}{n}$
c. Using part b., show that $\sup _{x \in \mathbb{R}} \mathbb{E}\left[\left(\widehat{F}_{n}(x)-F(x)\right)^{2}\right] \leq \frac{1}{4 n}$.

2 Programming

9. [2 points] Two random variables X and Y have equal distributions if their CDFs, F_{X} and F_{Y}, respectively, are equal: $\sup _{x}\left|F_{X}(x)-F_{Y}(x)\right|=0$. The central limit theorem says that the sum of k independent, zero-mean, variance- $1 / k$ random variables converges to a Gaussian distribution as k goes off to infinity. We will study this phenomenon empirically (you will use the Python packages Numpy and Matplotlib). Define $Y^{(k)}=\frac{1}{\sqrt{k}} \sum_{i=1}^{k} B_{i}$ where each B_{i} is equal to -1 and 1 with equal probability. It is easy to verify (you should) that $\frac{1}{\sqrt{k}} B_{i}$ is zero-mean and has variance $1 / k$.
a. For $i=1, \ldots, n$ let $Z_{i} \sim \mathcal{N}(0,1)$. If $F(x)$ is the true CDF from which each Z_{i} is drawn (i.e., Gaussian) and $\widehat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{Z_{i} \leq x\right)$, use the homework problem above to choose n large enough such that $\sup _{x} \sqrt{\mathbb{E}\left[\left(\widehat{F}_{n}(x)-F(x)\right)^{2}\right]} \leq 0.0025$, and plot $\widehat{F}_{n}(x)$ from -3 to 3 . (Hint: use $\mathrm{Z}=$ numpy.random.randn (n) to generate the random variables, and import matplotlib.pyplot as plt; plt.step (sorted (Z), np.arange(1,n+1)/float(n)) to plot).
b. For each $k \in\{1,8,64,512\}$ generate n independent copies $Y^{(k)}$ and plot their empirical CDF on the same plot as part a. (Hint: you can use np.sum(np.sign(np.random.randn(n, k)) *np.sqrt(1./k), axis=1) to generate n of the $Y^{(k)}$ random variables.)

Be sure to always label your axes. Your plot should look something like the following (Tip: checkout seaborn for instantly better looking plots.)

