Announcements

- Project feedback

As stated in the project description and multiple times in class:

- You must have data at the time of the proposal.
- \quad The project must contain real data (not just synthetic).
- 1 page maximum

Use spell check.
Clearly define metrics that will drive your development.
Please submit a proposal per person (for grading). It won't be marked late, obviously, just for book keeping.
If you have a partner, compare notes on feedback (usually only gave it once)

Recap: Nearest Neighbor

Machine Learning - CSE546
Kevin Jamieson
University of Washington
October 26, 2017

Some data, Bayes Classifier

Training data:
True label: +1
(True label: -1

Optimal "Bayes" classifier:
$\mathbb{P}(Y=1 \mid X=x)=\frac{1}{2}$
\square Predicted label: +1
\square Predicted label: -1

Figures stolen from Hastie et al

Linear Decision Boundary

Training data:

True label: +1
(True label: -1

Learned:

Linear Decision boundary
$x^{T} w+b=0$
\square Predicted label: +1
\square Predicted label: -1

Figures stolen from Hastie et al

15 Nearest Neighbor Boundary

Training data:
True label: +1
(True label: -1

Learned:

15 nearest neighbor decision boundary (majority vote)

Predicted label: +1
\square Predicted label: -1

1 Nearest Neighbor Boundary

Training data:
True label: +1
(True label: - 1

Learned:
1 nearest neighbor decision boundary (majority vote)
\square Predicted label: +1
\square Predicted label: -1

k-Nearest Neighbor Error

k - Number of Nearest Neighbors

Bias-Variance tradeoff

As k->infinity?
Bias:

Variance:

As $\mathrm{k}->1$?
Bias:
Variance:

1 nearest neighbor guarantee

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, k\}
$$

As $n \rightarrow \infty$, assume the x_{i} 's become dense in \mathbb{R}^{d}
Note: any $x_{a} \in \mathbb{R}^{d}$ has the same label distribution as x_{b} with $b=1 N N(a)$ If $p_{\ell}=\mathbb{P}\left(Y_{a}=\ell\right)=\mathbb{P}\left(Y_{b}=\ell\right)$ and $\ell^{*}=\arg \max _{\ell=1, \ldots, k} p_{\ell}$ then

Bates error $=1-p_{\ell^{*}}$
1-nearest neighbor error $=\mathbb{P}\left(Y_{a} \neq Y_{b}\right)=\sum_{\ell=1}^{k} \mathbb{P}\left(Y_{a}=\ell, Y_{b} \neq \ell\right)$

$$
=\sum_{\ell=1}^{k} p_{\ell}\left(1-p_{\ell}\right) \leq 2\left(1-p_{\ell^{*}}\right)-\frac{k}{k-1}\left(1-p_{\ell^{*}}\right)^{2}
$$

As x->infinity, then 1-NN rule error is at most twice the Bayes error!
[Cover, Hart, 1967]

Curse of dimensionality Ex. 1

X is uniformly distributed over $[0,1]^{p}$. What is $\mathbb{P}\left(X \in[0, r]^{p}\right)$?

Curse of dimensionality Ex. 2

$\left\{X_{i}\right\}_{i=1}^{n}$ are uniformly distributed over $[-.5, .5]^{p}$.

What is the median distance from a point at origin to its 1NN?

Nearest neighbor regression

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n}
$$

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neighbors of x_{0}
$\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i}$

$\widehat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)}$

$$
w\left(x_{0}\right), b\left(x_{0}\right)=\arg \min _{w, b} \sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)\left(y_{i}-\left(b+w^{T} x_{i}\right)\right)^{2}
$$

Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees. With not a lot of data, neighborhoods aren't "local" and methods suffer.

Kernels

Machine Learning - CSE546
 Kevin Jamieson
 University of Washington

October 26, 2017

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Hinge Loss: $\ell_{i}(w)=\max \left\{0,1-y_{i} x_{i}^{T} w\right\}$
Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

All in terms of inner products! Even nearest neighbor can use inner products!

What if the data is not linearly separable?

$$
\begin{aligned}
& \text { Use features of features } \\
& \text { of features of features... } \\
& \qquad \phi(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}
\end{aligned}
$$

Feature space can get really large really quickly!

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d

$$
d=1: \phi(u)=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2}
$$

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d

$$
\begin{aligned}
& d=1: \phi(u)=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2} \\
& d=2: \phi(u)=\left[\begin{array}{c}
u_{1}^{2} \\
u_{2}^{2} \\
u_{1} u_{2} \\
u_{2} u_{1}
\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} u_{2} v_{1} v_{2}
\end{aligned}
$$

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d
$d=1: \phi(u)=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2}$
$d=2: \phi(u)=\left[\begin{array}{c}u_{1}^{2} \\ u_{2}^{2} \\ u_{1} u_{2} \\ u_{2} u_{1}\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} u_{2} v_{1} v_{2}$

General d :

Dimension of $\phi(u)$ is roughly p^{d} if $u \in \mathbb{R}^{p}$

Kernel Trick

$$
\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{w}^{2}
$$

There exists an $\alpha \in \mathbb{R}^{n}: \widehat{w}=\sum_{i=1}^{n} \alpha_{i} x_{i} \quad$ Why?
$\widehat{\alpha}=\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle$

Kernel Trick

$$
\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{w}^{2}
$$

There exists an $\alpha \in \mathbb{R}^{n}: \widehat{w}=\sum_{i=1}^{n} \alpha_{i} x_{i} \quad$ Why?

$$
\begin{aligned}
\widehat{\alpha} & =\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle \\
& =\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j} K\left(x_{i}, x_{j}\right)\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \\
& =\arg \min _{\alpha}\|\mathbf{y}-\mathbf{K} \alpha\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha
\end{aligned}
$$

$$
K\left(x_{i}, x_{j}\right)=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle
$$

Why regularization?

Typically, $\mathbf{K} \succ 0$. What if $\lambda=0$?

$$
\widehat{\alpha}=\arg \min _{\alpha}\|\mathbf{y}-\mathbf{K} \alpha\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha
$$

Why regularization?

Typically, $\mathbf{K} \succ 0 . \quad$ What if $\lambda=0$?

$$
\widehat{\alpha}=\arg \min _{\alpha}\|\mathbf{y}-\mathbf{K} \alpha\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha
$$

Unregularized kernel least squares can (over) fit any data!

$$
\widehat{\alpha}=\mathbf{K}^{-1} \mathbf{y}
$$

Common kernels

- Polynomials of degree exactly d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomials of degree up to d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}
$$

- Gaussian (squared exponential) kernel

$$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid

$$
K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)
$$

Mercer's Theorem

- When do we have a valid Kernel $K\left(x, x^{\prime}\right)$?
- Definition 1: when it is an inner product
- Mercer's Theorem:
$\square K\left(x, x^{\prime}\right)$ is a valid kernel if and only if K is a positive semi-definite.
\square PSD in the following sense:

$$
\int_{x, x^{\prime}} h(x) K\left(x, x^{\prime}\right) h\left(x^{\prime}\right) d x d x^{\prime} \geq 0 \quad \forall h: \mathbb{R}^{d} \rightarrow \mathbb{R}, \int_{x}|h(x)|^{2} d x \leq \infty
$$

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Note that this is like weighting "bumps" on each point like kernel smoothing but now we learn the weights

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

The bandwidth sigma has an enormous effect on fit:

$$
\widehat{f}(x)=\sum_{i=1}^{n} \widehat{\alpha}_{i} K\left(x_{i}, x\right)
$$

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

The bandwidth sigma has an enormous effect on fit:

$$
\widehat{f}(x)=\sum_{i=1}^{n} \widehat{\alpha}_{i} K\left(x_{i}, x\right)
$$

RBF Classification

$$
\begin{gathered}
\widehat{w}=\sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(b+x_{i}^{T} w\right)\right\}+\lambda\|w\|_{2}^{2} \\
\min _{\alpha, b} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(b+\sum_{j=1}^{n} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle\right)\right\}+\lambda \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle
\end{gathered}
$$

RBF kernel Secretly random

features

$2 \cos (\alpha) \cos (\beta)=\cos (\alpha+\beta)+\cos (\alpha-\beta)$
$\cos (z)+\sin (z)$
$b \sim \operatorname{uniform}(0, \pi) \quad w \sim \mathcal{N}(0,2 \gamma)$
$\phi(x)=\sqrt{2} \cos \left(w^{T} x+b\right)$
$\mathbb{E}_{w, b}\left[\phi(x)^{T} \phi(y)\right]=$

RBF kernel Secretly random

features

$2 \cos (\alpha) \cos (\beta)=\cos (\alpha+\beta)+\cos (\alpha-\beta)$
$\cos (z)+\sin (z)$
$b \sim \operatorname{uniform}(0, \pi) \quad w \sim \mathcal{N}(0,2 \gamma)$
$\phi(x)=\sqrt{2} \cos \left(w^{T} x+b\right)$
$\mathbb{E}_{w, b}\left[\phi(x)^{T} \phi(y)\right]=e^{-\gamma\|x-y\|_{2}^{2}}$
[Rahimi, Recht 2007]

String Kernels

Example from Efron and Hastie, 2016
Amino acid sequences of different lengths:

x1
 ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI
 PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
 X2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) $20^{3}=8,000$

$$
h_{\mathrm{LEE}}^{3}\left(x_{1}\right)=1 \text { and } h_{\mathrm{LEE}}^{3}\left(x_{2}\right)=2 .
$$

Trees

Machine Learning - CSE546
Kevin Jamieson
University of Washington
October 26, 2017

Trees

$$
f(x)=\sum_{m=1}^{M} c_{m} I\left(x \in R_{m}\right)
$$

Build a binary tree, splitting along axes

Trees

$$
f(x)=\sum_{m=1}^{M} c_{m} I\left(x \in R_{m}\right)
$$

Build a binary tree, splitting along axes

How do you split?

When do you stop?

Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
\square Use, for example, information gain to select attribute
Split on $\arg \max _{i} I G\left(X_{i}\right)=\arg \max _{i} H(Y)-H\left(Y \mid X_{i}\right)$
- Recurse
- Prune

$$
f(x)=\sum_{m=1}^{M} c_{m} I\left(x \in R_{m}\right) .
$$

Trees

$f(x)=\sum_{m=1}^{M} c_{m} I\left(x \in R_{m}\right)$.

- Trees
- have low bias, high variance
- deal with categorial variables well
- intuitive, interpretable
- good software exists
- Some theoretical guarantees

Random Forests

Machine Learning - CSE546
Kevin Jamieson
University of Washington
October 26, 2017

Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to construct a lot of "lightly correlated" trees and average them:
"Bagging:" Bootstrap aggregating

Random Forrests

Algorithm 15.1 Random Forest for Regression or Classification.

1. For $b=1$ to B :
(a) Draw a bootstrap sample \mathbf{Z}^{*} of size N from the training data.
(b) Grow a random-forest tree T_{b} to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size $n_{\min }$ is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.
2. Output the ensemble of trees $\left\{T_{b}\right\}_{1}^{B}$.
m~sqrt(p),p/3

To make a prediction at a new point x :
Regression: $\hat{f}_{\mathrm{rf}}^{B}(x)=\frac{1}{B} \sum_{b=1}^{B} T_{b}(x)$.
Classification: Let $\hat{C}_{b}(x)$ be the class prediction of the b th random-forest tree. Then $\hat{C}_{\mathrm{rf}}^{B}(x)=$ majority vote $\left\{\hat{C}_{b}(x)\right\}_{1}^{B}$.

The Kinect pose estimation pipeline

https://www.microsoft.com/en-us/ research/wp-content/uploads/2016/02/ CVPR20201120-20Final20Video.mp4

fit model \&
track skeleton

Random Forrest

Random forrest

3 nearest neighbor

Random Forrest

Given random variables $Y_{1}, Y_{2}, \ldots, Y_{B}$ with $\mathbb{E}\left[Y_{i}\right]=y, \mathbb{E}\left[\left(Y_{i}-y\right)^{2}\right]=\sigma^{2}, \mathbb{E}\left[\left(Y_{i}-y\right)\left(Y_{j}-y\right)\right]=\rho \sigma^{2}$
The Yi's are identically distributed but not independent

$$
\mathbb{E}\left[\left(\frac{1}{B} \sum_{i=1}^{B} Y_{i}-y\right)^{2}\right]=
$$

Random Forests

- Random Forests
- have low bias, low variance
- deal with categorial variables well
- not that intuitive or interpretable
- good software exists
- Some theoretical guarantees
- Can still overfit

Random Forests

- Random Forests
- have low bias, low variance
- deal with categorial variables well
- not that intuitive or interpretable
- good software exists
- Some theoretical guarantees
- Can still overfit

