
Announcements

1©2017 Kevin Jamieson

• Project feedback
As stated in the project description and multiple times in class:

⁃ You must have data at the time of the proposal.
⁃ The project must contain real data (not just synthetic).
⁃ 1 page maximum

Use spell check.
Clearly define metrics that will drive your development.
Please submit a proposal per person (for grading). It won’t be marked late, obviously, just for book keeping.
If you have a partner, compare notes on feedback (usually only gave it once)

©2017 Kevin Jamieson 2

Recap: Nearest
Neighbor

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017

©2017 Kevin Jamieson 3

Some data, Bayes Classifier

Training data:

True label: +1

True label: -1

Optimal “Bayes” classifier:

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al

P(Y = 1|X = x) =
1

2

©2017 Kevin Jamieson 4

Linear Decision Boundary

Training data:

True label: +1

True label: -1

Learned:
Linear Decision boundary

Predicted label: +1

Predicted label: -1

x

T
w + b = 0

Figures stolen from Hastie et al

©2017 Kevin Jamieson 5

15 Nearest Neighbor Boundary

Training data:

True label: +1

True label: -1

Learned:
15 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

©2017 Kevin Jamieson 6

1 Nearest Neighbor Boundary

Training data:

True label: +1

True label: -1

Learned:
1 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

©2017 Kevin Jamieson 7

k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance:

Bias:

Variance:

©2017 Kevin Jamieson 8

1 nearest neighbor guarantee

{(xi, yi)})ni=1 xi 2 Rd
, yi 2 {1, . . . , k}

P(Ya 6= Yb) =
kX

`=1

P(Ya = `, Yb 6= `)
1-nearest neighbor error =

Bates error = 1� p`⇤

As n ! 1, assume the xi’s become dense in Rd

Note: any xa 2 Rd
has the same label distribution as xb with b = 1NN(a)

If p` = P(Ya = `) = P(Yb = `) and `⇤ = arg max

`=1,...,k
p` then

=
kX

`=1

p`(1� p`) 2(1� p`⇤)�
k

k � 1
(1� p`⇤)

2

As x->infinity, then 1-NN rule error is at most twice the Bayes error!

[Cover, Hart, 1967]

©2017 Kevin Jamieson 9

Curse of dimensionality Ex. 1

side length r

X is uniformly distributed over [0, 1]p. What is P(X 2 [0, r]p)?

©2017 Kevin Jamieson 10

Curse of dimensionality Ex. 2

{Xi}ni=1 are uniformly distributed over [�.5, .5]p.

What is the median distance from a point at origin to its 1NN?

Kevin Jamieson 2017 11

Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

b
f(x0) =

X

xi2Nk(x0)

1

k

y

i

b
f(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

b
f(x0) = b(x0) + w(x0)

T
x0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ w

T
xi))

2

Local Linear Regression

©2017 Kevin Jamieson 12

Nearest Neighbor Overview

■ Very simple to explain and implement
■ No training! But finding nearest neighbors in large dataset

at test can be computationally demanding (kD-trees help)
■ You can use other forms of distance (not just Euclidean)
■ Smoothing with Kernels and local linear regression can

improve performance (at the cost of higher variance)
■ With a lot of data, “local methods” have strong, simple

theoretical guarantees. With not a lot of data,
neighborhoods aren’t “local” and methods suffer.

©2017 Kevin Jamieson 13

Kernels

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017

©Kevin Jamieson 2017 14

■ Have a bunch of iid data of the form:

{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi x
T
i w))

Squared error Loss: `i(w) = (yi � x

T
i w)

2

xi 2 Rd
yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)
Each `i(w) is convex.

Hinge Loss: `i(w) = max{0, 1� yix
T
i w}

Machine Learning Problems

All in terms of inner products! Even nearest neighbor can use inner products!

©2017 Kevin Jamieson 15

What if the data is not linearly separable?

Use features of features
of features of features….

Feature space can get really large really quickly!

�(x) : Rd ! Rp

©2017 Kevin Jamieson 16

Dot-product of polynomials

exactly d

d = 1 : �(u) =

u1

u2

�
h�(u),�(v)i = u1v1 + u2v2

©2017 Kevin Jamieson 17

Dot-product of polynomials

exactly d

d = 1 : �(u) =

u1

u2

�
h�(u),�(v)i = u1v1 + u2v2

d = 2 : �(u) =

2

664

u2
1

u2
2

u1u2

u2u1

3

775 h�(u),�(v)i = u2
1v

2
1 + u2

2v
2
2 + 2u1u2v1v2

©2017 Kevin Jamieson 18

Dot-product of polynomials

exactly d

d = 1 : �(u) =

u1

u2

�
h�(u),�(v)i = u1v1 + u2v2

d = 2 : �(u) =

2

664

u2
1

u2
2

u1u2

u2u1

3

775 h�(u),�(v)i = u2
1v

2
1 + u2

2v
2
2 + 2u1u2v1v2

General d :

Dimension of �(u) is roughly pd if u 2 Rp

©2017 Kevin Jamieson 19

Kernel Trick

There exists an ↵ 2 Rn
: bw =

nX

i=1

↵ixi Why?

bw = argmin
w

nX

i=1

(yi � x

T
i w)

2 + �||w||2w

b↵ = argmin
↵

nX

i=1

(yi �
nX

j=1

↵jhxj , xii)2 + �

nX

i=1

nX

j=1

↵i↵jhxi, xji

©2017 Kevin Jamieson 20

Kernel Trick

There exists an ↵ 2 Rn
: bw =

nX

i=1

↵ixi Why?

bw = argmin
w

nX

i=1

(yi � x

T
i w)

2 + �||w||2w

b↵ = argmin
↵

nX

i=1

(yi �
nX

j=1

↵jhxj , xii)2 + �

nX

i=1

nX

j=1

↵i↵jhxi, xji

= argmin
↵

nX

i=1

(yi �
nX

j=1

↵jK(xi, xj))
2 + �

nX

i=1

nX

j=1

↵i↵jK(xi, xj)

= argmin
↵

||y �K↵||22 + �↵TK↵

K(xi, xj) = h�(xi),�(xj)i

©2017 Kevin Jamieson 21

Why regularization?

b↵ = argmin
↵

||y �K↵||22 + �↵TK↵

Typically, K � 0. What if � = 0?

©2017 Kevin Jamieson 22

Why regularization?

b↵ = argmin
↵

||y �K↵||22 + �↵TK↵

Unregularized kernel least squares can (over) fit any data!

Typically, K � 0. What if � = 0?

b↵ = K�1y

©2017 Kevin Jamieson 23

Common kernels

■ Polynomials of degree exactly d

■ Polynomials of degree up to d

■ Gaussian (squared exponential) kernel

■ Sigmoid
K(u,v) = exp

✓
� ||u� v||22

2�2

◆

©2017 Kevin Jamieson 24

Mercer’s Theorem

■ When do we have a valid Kernel K(x,x’)?
■ Definition 1: when it is an inner product

■ Mercer’s Theorem:
K(x,x’) is a valid kernel if and only if K is a positive
semi-definite.
PSD in the following sense:

Z

x,x

0
h(x)K(x, x0)h(x0)dxdx0 � 0 8h : Rd ! R,

Z

x

|h(x)|2dx 1

©2017 Kevin Jamieson 25

RBF Kernel

■ Note that this is like weighting “bumps” on each point like kernel
smoothing but now we learn the weights

K(u,v) = exp

✓
� ||u� v||22

2�2

◆

©2017 Kevin Jamieson 26

RBF Kernel K(u,v) = exp

✓
� ||u� v||22

2�2

◆

The bandwidth sigma has an enormous effect on fit:
� = 10�2 � = 10�1 � = 10�0� = 10�4 � = 10�4 � = 10�4

b
f(x) =

nX

i=1

b↵iK(xi, x)

©2017 Kevin Jamieson 27

RBF Kernel K(u,v) = exp

✓
� ||u� v||22

2�2

◆

The bandwidth sigma has an enormous effect on fit:
� = 10�2 � = 10�1 � = 10�0� = 10�4 � = 10�4 � = 10�4

� = 10�1 � = 10�0� = 10�3 � = 10�4

b
f(x) =

nX

i=1

b↵iK(xi, x)

©2017 Kevin Jamieson 28

RBF Classification

bw =

min

↵,b

nX

i=1

max{0, 1� yi(b+

nX

j=1

↵jhxi, xji)}+ �

nX

i,j=1

↵i↵jhxi, xji

nX

i=1

max{0, 1� yi(b+ x

T
i w)}+ �||w||22

©2017 Kevin Jamieson 29

RBF kernel Secretly random
features

b ⇠ uniform(0,⇡)

�(x) =

p
2 cos(w

T
x+ b)

2 cos(↵) cos(�) = cos(↵+ �) + cos(↵� �)

Ew,b[�(x)
T
�(y)] =

w ⇠ N (0, 2�)

ejz = cos(z) + sin(z)

©2017 Kevin Jamieson 30

RBF kernel Secretly random
features

b ⇠ uniform(0,⇡)

�(x) =

p
2 cos(w

T
x+ b)

2 cos(↵) cos(�) = cos(↵+ �) + cos(↵� �)

Ew,b[�(x)
T
�(y)] = e��||x�y||22

w ⇠ N (0, 2�)

[Rahimi, Recht 2007]

ejz = cos(z) + sin(z)

©2017 Kevin Jamieson 31

String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

x1

x2

All subsequences of length 3 (of possible 20 amino acids)

©2017 Kevin Jamieson 32

Trees

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017

Trees

33©2017 Kevin Jamieson

Build a binary tree, splitting along axes

Trees

34©2017 Kevin Jamieson

Build a binary tree, splitting along axes

How do you split?

When do you stop?

Kevin Jamieson 2016 35

Learning decision trees

■ Start from empty decision tree
■ Split on next best attribute (feature)

Use, for example, information gain to select attribute
Split on

■ Recurse
■ Prune

Trees

36©2017 Kevin Jamieson

• Trees

• have low bias, high variance

• deal with categorial variables
well

• intuitive, interpretable

• good software exists

• Some theoretical guarantees

©2017 Kevin Jamieson 37

Random Forests

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2017

Random Forests

38©2017 Kevin Jamieson

Tree methods have low bias but high variance.

One way to reduce variance is to
construct a lot of “lightly correlated”
trees and average them:

“Bagging:” Bootstrap aggregating

Random Forrests

39©2017 Kevin Jamieson

m~sqrt(p),p/3

40

infer
body parts

per pixel cluster pixels to
hypothesize

body joint
positions

capture
depth image &

remove bg

fit model &
track skeleton

https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/02/
CVPR20201120-20Final20Video.mp4

Random Forrest

41©2017 Kevin Jamieson

3 nearest neighborRandom forrest

Random Forrest

42©2017 Kevin Jamieson

E[(1
B

BX

i=1

Yi � y)2] =

Given random variables Y1, Y2, . . . , YB with

E[Yi] = y, E[(Yi � y)2] = �2
, E[(Yi � y)(Yj � y)] = ⇢�2

The Yi’s are identically distributed but not independent

Random Forests

43©2017 Kevin Jamieson

• Random Forests

• have low bias, low variance

• deal with categorial variables well

• not that intuitive or interpretable

• good software exists

• Some theoretical guarantees

• Can still overfit

Random Forests

44©2017 Kevin Jamieson

• Random Forests

• have low bias, low variance

• deal with categorial variables well

• not that intuitive or interpretable

• good software exists

• Some theoretical guarantees

• Can still overfit

