Announcements

- Google form feedback https://tinyurl.com/yb2tprkl

The previous and future weeks

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 9, 2017

So far...

Supervised learning: $x_{i} \in R^{d} y_{i} \in \mathbb{R}$ for $i=1, \ldots, n$. Learn $f: x \rightarrow y$
Loss functions: $L(f)=\sum_{i=1} \ell\left(f\left(x_{i}\right), y_{i}\right)$

$$
\begin{aligned}
& l(y, f(x))=(f(x)-y)^{2} \quad \max (0,1-y f(x)) \\
& =y \log (f(x))+(1-y) \log (1-f(x)) \Leftrightarrow \log (1+\exp (-y f(x)))
\end{aligned}
$$

$$
\underset{\substack{\text { Linear } \\ \text { - Lasso } \\ \text { - Ride }}}{ }\} \text { SUM }
$$

Trees, Boostri, Tres
Nearest Neighbor Nemal Networks
Kernel Machines

Method comparison

TABLE 10.1. Some characteristics of different learning methods. Key: $\boldsymbol{\Delta}=$ good, *=fair, and $\mathbf{\nabla}=$ poor.

Characteristic	Neural Nets	SVM	Trees	Boosting Trees	$\mathrm{k}-\mathrm{NN}$, Kernels
Natural handling of data of "mixed" type	V	V	A	A	V
Handling of missing values	∇	∇	A	Δ	Δ
Robustness to outliers in input space	V	V	A	V	A
Insensitive to monotone transformations of inputs	V	V	A	V	V
Computational scalability (large N)	V	V	A	A	V
Ability to deal with irrelevant inputs	V	V	A	A	V
Ability to extract linear combinations of features	A	A	V	V	-
Interpretability	V	V	-	A	V
Predictive power	A	Δ	V	-	Δ

To come

- Unsupervised learning
- SVD
- Clustering
- Density estimation
- Machine learning street fighting tools
- Tips, tricks, data pre-processing, output post-processing
- Domain specific data (images, sequences)
- Reinforcement learning
- Learning theory

Principle Component Analysis

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 9, 2017

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mu,\left\{\lambda_{i}\right\}, \mathbf{v}_{q}} \sum_{i=1}^{N}\left\|\underline{x_{i}}-\underline{\mu}-\mathbf{V}_{q} \lambda_{i}\right\|^{2} . \quad V_{q} \in \mathbb{R}^{d \times q}
$$

where $\lambda_{i} \in \mathbb{R}^{q}$ and $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\underline{\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}}
$$

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mu,\left\{\lambda_{i}\right\}, \mathbf{v}_{q}} \sum_{i=1}^{N}\left\|x_{i}-\underline{\mu}-\mathbf{V}_{q} \lambda_{i}\right\|^{2} .
$$

where $\lambda_{i} \in \mathbb{R}^{q}$ and $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

Natural choices for μ, λ_{i} ?

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mu,\left\{\lambda_{i}\right\}, \mathbf{v}_{q}} \sum_{i=1}^{N}\left\|x_{i}-\mu-\mathbf{V}_{q} \lambda_{i}\right\|^{2} .
$$

where $\lambda_{i} \in \mathbb{R}^{q}$ and $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

$-\overline{\mathbf{V}}_{q}^{T} \mathbf{V}_{q}=I_{q}$

Natural choices for μ, λ_{i} ?

$$
=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

$$
\begin{aligned}
& \hat{\mu}=\bar{x}_{i}=\bar{n} \sum_{i=1} \\
& \hat{\lambda}_{i}=\mathbf{V}^{T}\left(x_{i}-\bar{x}\right) .
\end{aligned}
$$

$$
\hat{\lambda}_{i}=\mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right) .
$$

Which gives us:

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

$\mathbf{V}_{q} \mathbf{V}_{q}^{T}$ is a projection matrix that minimizes error in basis of size q
$T_{r}\left(v^{T}\left(U_{0}\right)=T_{r}\left(A \cup \cup^{T}\right)\right.$
Linear projections $=I-2 V_{2} V_{2}^{\top}+v_{2} V_{2}^{\top} V_{V_{2}} V_{2}^{\top}$

$$
\begin{aligned}
& \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2} \\
& \frac{\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}}{\underline{\underline{\mathbf{V}_{q}^{T}} \mathbf{V}_{q}=I_{q}}} \\
& =2\left\|\left(I-V_{2} V_{2}^{\prime}\right)\left(x_{i}-\bar{x}\right)\right\|_{2}^{2} \\
& =\sum_{i}\left(x_{i}-\bar{x}\right)^{\top}\left(I-V_{2} V_{2}^{\prime}\right)^{\top}\left(I-V_{2} v_{i}^{\top}\right)\left(x_{i}-\bar{x}\right) \\
& =\sum_{i}\left(x_{i}-\bar{x}\right)^{\top}\left(I-V_{2} V_{\varepsilon}{ }^{\top}\right)\left(x_{i}-\bar{x}\right) \\
& =\sum_{i} \operatorname{Tr}\left(\left(I-V_{2} V_{2} \top\right)\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top}\right) \\
& =\sum \operatorname{Tr}\left(\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top}\right)-\operatorname{Tr}\left(V_{q} V_{v}^{\top}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{r}\right) \\
& =\operatorname{Tr}(\Sigma)-\sum_{i=1}^{n} \operatorname{Tr}\left(V_{2}^{\top}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top} V_{2}\right) \\
& =\operatorname{Tr}(\Sigma)-\bar{T}_{r}\left(V_{\varepsilon}^{T} \Sigma V_{\varepsilon}\right)
\end{aligned}
$$

Linear projections
$\sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2}$

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

λ, v ore eigencalve/vector pair

$$
\begin{aligned}
& \Sigma_{v}=\lambda v \\
& -\hat{\Lambda}=\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow V_{q}=V_{q}
\end{aligned}
$$

Linear projections

$$
\begin{array}{cc}
\sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2} & \Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \\
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
\end{array}
$$

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2}=\min _{\mathbf{V}_{q}} \operatorname{Tr}(\Sigma)-\operatorname{Tr}\left(\mathbf{V}_{q}^{T} \Sigma \mathbf{V}_{q}\right)
$$

Eigenvalue decomposition of \sum

$$
\begin{aligned}
& \mathrm{V}_{q} \text { are the first } q \text { eigenvectors of } \Sigma \\
& \text { with the lagest } q \text { eigenvalues }
\end{aligned}
$$

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} .
$$

where $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principle components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Principle component Analysis (PCA) projects ($\mathbf{X}-1 \bar{x}$) down onto \mathbf{V}_{q}

$$
\underline{\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}}=\underline{\mathbf{U}_{q} \mathrm{~d} \dot{\operatorname{aj}}\left(d_{1}, \ldots, d_{q}\right) \quad \underline{\underline{\mathbf{U}_{q}^{T} \mathbf{U}_{q}}}=I_{q}}
$$

Linear projections $\bar{x}=\left[\begin{array}{l}x i \\ \dot{z}_{n}\end{array}\right]$

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N} \|\left(x_{i}-\bar{x}\right)-\underline{\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right) \|^{2}} .
$$

where $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principle components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Principle component Analysis (PCA) projects ($\mathbf{X}-1 \bar{x}$) down onto \mathbf{V}_{q} (if $d<n$)

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{q} \mathrm{~d} \dot{\operatorname{mag}}\left(d_{1}, \ldots, d_{q}\right) \quad \mathbf{U}_{q}^{T} \mathbf{U}_{q}=I_{q}
$$

Singular Value Decomposition defined as

$$
\underline{\mathbf{X}}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}
$$

$\left(x_{i}-\bar{x}\right)^{\top} v_{1}=$

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} .
$$

where $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principle components

$$
\begin{aligned}
& \Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \\
&=\left(x-1 \bar{y}^{\top}\right)^{\top}\left(x-1 \frac{1}{\bar{x}}\right)
\end{aligned}
$$

Principle component Analysis (PCA) projects $(\mathbf{X}-1 \bar{x})$ down onto \mathbf{V}_{q}

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{q} \operatorname{drag}\left(d_{1}, \ldots, d_{q}\right) \quad \mathbf{U}_{q}^{T} \mathbf{U}_{q}=I_{q} \quad \sum=\sum_{i=r}^{d} V_{i} v_{i}^{\top} d_{i}^{2}
$$

Singular Value Decomposition defined as

$$
\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S} \mathbf{V}^{T}
$$

How do the eigenvalues
of Σ relate to the singular
values of $\mathbf{X}-\mathbf{1} \bar{x}$?
A is sing ut- if $f \times x=0: A x=0$ Dimensionality reduction

Dimensionality reduction

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$
Handwritten 3 's, 16x16 pixel image so that $x_{i} \in \mathbb{R}^{256}$

$$
\begin{aligned}
\hat{f}(\lambda) & =\bar{x}+\lambda_{1} v_{1}+\lambda_{2} v_{2} \\
& =3+\lambda_{1} \cdot 3+\lambda_{2} \cdot 3
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathbf{X}-1 \bar{x}^{T}\right) \mathbf{V}_{2}=\mathbf{U}_{2} \mathbf{S}_{2} \in \mathbb{R}^{n \times 2} \\
& \cdots
\end{aligned}
$$

FIGURE 14.24 . The 256 singalar valves for the digitized threes, compared to thase for a randomized verrion of the data (cach column of \mathbf{X} was acrambled).

Kernel PCA

$$
\begin{aligned}
& \mathbf{V}_{q} \text { are the first } q \text { eigenvectors of } \Sigma \text { and SVD } \mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T} \\
& \left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{\mathbf{q}} \mathbf{S}_{\mathbf{q}} \in \mathbb{R}^{n \times q} \\
& \bar{x}^{\top}=1^{\top} X \ln \\
& \frac{\mathbf{J X}=\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}}{2} \quad \underset{\sim}{\mathbf{J}=I-\mathbf{1 1}^{T} / n} \\
& (\mathbf{J X})(\mathbf{J X})^{T}=J \underset{K}{X} X^{\top} J=\left(X-\Psi^{\top} \bar{\Sigma}^{\top}\right)\left(x-\Psi_{\bar{x}^{T}}\right)^{\top} \\
& =\text { USU UpU }{ }^{\top} \\
& =U S^{2} U^{\top}
\end{aligned}
$$

Kernel PCA

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T}$

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{\mathbf{q}} \mathbf{S}_{\mathbf{q}} \in \mathbb{R}^{n \times q}
$$

$\mathbf{J X}=\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

$$
\mathbf{J}=I-11^{T} / n \quad-\frac{\left\|x_{i}-x_{j}\right\|_{2}^{2}}{2 \sigma^{2}}
$$

$$
(\mathbf{J X})(\mathbf{J X})^{T}=\mathbf{U S}^{2} \mathbf{U}^{T}=J K J
$$

$$
K_{0, j}=e
$$

PCA Algorithm

```
                    PCA
    input
        A matrix of m}\mathrm{ examples }X\in\mp@subsup{\mathbb{R}}{}{m,d
        number of components }
    if (m>d)
    A= 致}\boldsymbol{X
    Let }\mp@subsup{\mathbf{u}}{1}{},\ldots,\mp@subsup{\mathbf{u}}{n}{}\mathrm{ be the eigenvectors of A with largest eigenvalues
    else
        B=XX
        Let }\mp@subsup{\mathbf{v}}{1}{},\ldots,\mp@subsup{\mathbf{v}}{n}{}\mathrm{ be the eigenvectors of B}\mathrm{ with largest eigenvalues
        for }i=1,\ldots,n\mathrm{ set }\mp@subsup{\mathbf{u}}{i}{}=\frac{1}{|\mp@subsup{X}{}{\top}\mp@subsup{\mathbf{v}}{i}{}|}\mp@subsup{X}{}{\top}\mp@subsup{\mathbf{v}}{i}{
    output: }\mp@subsup{\mathbf{u}}{1}{},\ldots,\mp@subsup{\mathbf{u}}{n}{
``` Ridge Regression revisited \(V^{\prime \prime}=v^{\top}\)
\(\widehat{w}_{\text {ridge }}=\arg \min _{w}\|\mathbf{X} w-\mathbf{y}\|_{2}^{2}+\lambda\|w\|_{2}^{2}\)
\(\widehat{w}_{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y} \quad\) Assume \(\mathbf{X}\) is centered Singular vector decomposition (SVD): \(\mathbf{X}\) that \(=\mathbf{U S V}^{T}\)
\[
\begin{aligned}
\hat{\mathbf{y}} & =\mathbf{X}\left(\underline{\left.\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}}\right. \\
& =U S U^{\top}\left(U S^{2} V^{\top}+\lambda I\right)^{-1} V S U^{\top} y \quad U=\left[U_{1}, \ldots U_{d}\right] \\
& =U S V^{\top}\left(V\left(S^{2}+\lambda I\right) V^{\top}\right)^{-1} V S U^{\top} \\
& =U S U^{\top}\left(U^{\top}\left(S^{2}+\lambda I I^{-1} U^{-1}\right) U S U^{\top}\right. \\
& =U S V^{\top} V\left(S^{2}+\lambda I\right)^{-1} V^{\top} U S U^{\top}{ }_{d} \\
& =U S\left(S^{2}+\lambda I\right)^{-1} S U^{\top}=\sum_{i=1}^{2} U_{i} U_{i}^{\top} \frac{S_{i}^{2}}{S_{i}^{2}+\lambda}
\end{aligned}
\]

\section*{Ridge Regression revisited}
\[
\begin{aligned}
& \widehat{w}_{\text {ridge }}=\arg \min _{w}\|\mathbf{X} w-\mathbf{y}\|_{2}^{2}+\lambda\|w\|_{2}^{2} \\
& \widehat{w}_{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
\]

Singular vector decomposition (SVD): \(\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}\)
\[
\hat{\mathbf{y}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\]
\[
\hat{\mathbf{y}}=\sum_{i=1}^{d} u_{i} u_{i}^{T} \underbrace{\frac{s_{i}^{2}}{s_{i}^{2}+\lambda} y_{i}}
\]
\[
\begin{aligned}
& \mathbf{U}=\left[u_{1}, \ldots, u_{d}\right] \\
& \mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{d}\right)
\end{aligned}
\]```

