Announcements $\quad X=\left[\begin{array}{c}x_{1}^{i} \\ x_{n}^{n}\end{array}\right] \frac{1}{n} \prod_{1 \times n} \prod_{n \times d}^{\top} X=\bar{x}^{\top} \quad \bar{x}=\sqrt[n]{n} \sum_{i=1}^{n} x_{i}$

- Milestone due tonight
- Fill in the missing plots:

$$
J x=X-1 \bar{x}^{\top}
$$

$J x=\sum^{5} u_{n} v_{n}^{\top} s_{n}$
$\mathbf{U}, \mathbf{S}, \mathbf{V}=\operatorname{svd}\binom{J X}{$ and }$\Rightarrow U^{\top} U=I, V^{\top} V=I$

$$
\mathbf{J} \mathbf{X}=\mathbf{U S V}^{T} \quad \mathbf{J}=I-1 \mathbf{1}^{T} / n
$$

$\mathbf{J X V S}^{-1}$
$\mathbf{J X V S}^{-1} \mathbf{V}^{\boldsymbol{T}}$

$$
\begin{aligned}
J X V S^{-1} & =U S V^{\top} V S^{-1} \\
& =U
\end{aligned}
$$

Principal Component Analysis (continued)

Machine Learning - CSE546 Kevin Jamieson
University of Washington
November 13, 2017

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} .
$$

where $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principal components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Principal Component Analysis (PCA) projects ($\mathbf{X}-\mathbf{1} \bar{x}^{T}$) down onto \mathbf{V}_{q}

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{q} \operatorname{diag}\left(d_{1}, \ldots, d_{q}\right) \quad \mathbf{U}_{q}^{T} \mathbf{U}_{q}=I_{q}
$$

Singular Value Decomposition defined as

$$
\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T}
$$

Linear projections

$$
\begin{aligned}
& X \text { is centored }\left(J_{x}=x\right) \quad U S V^{\top}=x \\
& X X^{\top}=U S^{2} U^{\top} \quad \operatorname{eig}\left(x X^{\top}\right)=U \\
& \underbrace{X^{\top} X}_{d \times d}=V S^{2} V^{\top} \quad \text { eig vec }\left(x^{\top} x\right)=V \\
& A=X V
\end{aligned}
$$

$$
\begin{aligned}
& A e_{i}=u_{i} s_{i} \\
& \left\|A e_{i}\right\|_{2}^{2}=s_{i}^{2}\| \|_{i} \|_{2}^{2}=s_{i}^{2}
\end{aligned}
$$

Dimensionality reduction

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

Power method - one at a time

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \quad v_{*}=\arg \max _{v} v^{T} \Sigma v
$$

Power method - one at a time

$$
\begin{aligned}
& \Sigma:=\sum^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \\
& v_{*}=\arg \max v^{T} \Sigma v
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma^{h}=\left(V S V^{\top}\right)^{h}=V S^{k} V^{\top}
\end{aligned}
$$

Markov chains - PageRank

Markov chains - PageRank

$L_{i, j}=\mathbf{1}\{$ page j points to page $i\}$

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Google PageRank of page i:

$$
p_{i}=(1-\lambda)+\lambda \sum_{j=1}^{n} \frac{L_{i, j}}{c_{j}} p_{j} \quad c_{j}=\sum_{k=1}^{n} L_{j, k}
$$

Markov chains - PageRank

$$
L_{i, j}=\mathbf{1}\{\text { page } j \text { points to page } i\}
$$

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Google PageRank of pages given by:

$$
\mathbf{p}=(1-\lambda) \mathbf{1}+\lambda \mathbf{L} \mathbf{D}_{c}^{-1} \mathbf{p}
$$

$$
D_{c}=\operatorname{drag}\left(c_{1}, \ldots c_{n}\right)=m_{n=0}
$$

Markov chains - PageRank

$L_{i, j}=\mathbf{1}\{$ page j points to page $i\}$

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Google PageRank of pages given by:

$$
\mathbf{p}=(1-\lambda) \mathbf{1}+\lambda \mathbf{L} \mathbf{D}_{c}^{-1} \mathbf{p}
$$

Set arbitrary normalization: $\mathbf{1}^{T} \mathbf{p}=n$ so that

$$
\begin{aligned}
\mathbf{p} & =\left((1-\lambda) \mathbf{1 1} \mathbf{1}^{T} / n+\lambda \mathbf{L} \mathbf{D}_{c}^{-1}\right) \mathbf{p} \\
& =: \mathbf{A} \mathbf{p}
\end{aligned}
$$

Markov chains - PageRank

$L_{i, j}=\mathbf{1}\{$ page j points to page $i\}$

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Google PageRank of pages given by:

$$
\mathbf{p}=(1-\lambda) \mathbf{1}+\lambda \mathbf{L} \mathbf{D}_{c}^{-1} \mathbf{p}
$$

Set arbitrary normalization: $\mathbf{1}^{T} \mathbf{p}=n$ so that

$$
\begin{aligned}
\mathbf{p} & =\left((1-\lambda) \mathbf{1 1} 1^{T} / n+\lambda \mathbf{L} \mathbf{D}_{c}^{-1}\right) \mathbf{p} \\
& =: \mathbf{A p}
\end{aligned}
$$

p is an eigenvector of \mathbf{A} with eigenvalue 1! And by the properties stochastic matrices, it corresponds to the largest eigenvalue

Markov chains - PageRank

$L_{i, j}=\mathbf{1}\{$ page j points to page $i\}$

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Google PageRank of pages given by:

$$
\mathbf{p}=(1-\lambda) \mathbf{1}+\lambda \mathbf{L} \mathbf{D}_{c}^{-1} \mathbf{p}
$$

Set arbitrary normalization: $\mathbf{1}^{T} \mathbf{p}=n$ so that

$$
\begin{aligned}
\mathbf{p} & =\left((1-\lambda) \mathbf{1 1} 1^{T} / n+\lambda \mathbf{L} \mathbf{D}_{c}^{-1}\right) \mathbf{p} \\
& =: \mathbf{A p}
\end{aligned}
$$

p is an eigenvector of \mathbf{A} with eigenvalue 1! And by the properties stochastic matrices, it corresponds to the largest eigenvalue

Solve using power method: $\quad \mathbf{p}_{k+1}=\frac{\mathbf{A} \mathbf{p}_{k}}{\mathbf{1}^{T} \mathbf{A} \mathbf{p}_{k} / n} \quad \mathbf{p}_{0} \sim \operatorname{uniform}\left([0,1]^{n}\right)$

Matrix completion

Given historical data on how users rated movies in past:
17,700 ${ }^{n}$ movies, 480,189 ${ }^{\text {users, }} 99,072,112$ ratings
(Sparsity: 1.2\%)
Predict how the same users will rate movies in the future (for $\$ 1$ million prize)

$$
X=U V^{T} \quad U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}
$$

user i is assiynedavector $u_{i} \in \mathbb{R}^{d}$ movie j is $"$ " $V_{j} \in \mathbb{R} d$
user i rates movie j as $\approx u_{i}^{T} V_{j}$

Matrix completion

n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\left\|\left(U V^{T}\right)_{i, j}-s_{i, j}\right\|_{2}^{2}
$$

How do we solve it? With full information?

Matrix completion

n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\left\|\left(U V^{T}\right)_{i, j}-s_{i, j}\right\|_{2}^{2}
$$

Random projections

PCA finds a low-dimensional representation that reduces population variance

$$
\begin{array}{ll}
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} . & \begin{array}{l}
\mathbf{V}_{q} \mathbf{V}_{q}^{T} \text { is a projection matr } \\
\text { minimizes error in basis of }
\end{array} \\
\mathbf{V}_{q} \text { are the first } q \text { eigenvectors of } \Sigma & \Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
\end{array}
$$

But what if I care about the reconstruction of the individual points?

$$
\min _{\mathbf{W}_{q}} \max _{i=1, \ldots, n}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{W}_{q} \mathbf{W}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

Random projections

$$
\min _{\mathbf{W}_{q}} \max _{i=1, \ldots, n}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{W}_{q} \mathbf{W}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

Johnson-Lindenstrauss (1983)
Theorem 1.1. (Johnson-Lindenstrauss) Let $\epsilon \in(0,1 / 2)$. Let $Q \subset \mathbb{R}^{d}$ be a set of n points and $k=\frac{20 \log n}{\epsilon^{2}}$. There exists a Lipshcitz mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ such that for all $u, v \in Q$:
(independent of d)

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2}
$$

Random projections

$$
\min _{\mathbf{W}_{q}} \max _{i=1, \ldots, n}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{W}_{q} \mathbf{W}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

Johnson-Lindenstrauss (1983)
Theorem 1.1. (Johnson-Lindenstrauss) Let $\epsilon \in(0,1 / 2)$. Let $Q \subset \mathbb{R}^{d}$ be a set of n points and $k=\frac{20 \log n}{\epsilon^{2}}$. There exists a Lipshcitz mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ such that for all $u, v \in Q$:
(independent of d)

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2}
$$

Theorem 1.2. (Norm preservation) Let $x \in \mathbb{R}^{d}$. Assume that the entries in $A \subset \mathbb{R}^{k \times d}$ are sampled independently from $N(0,1)$. Then,

$$
\operatorname{Pr}\left((1-\epsilon)\|x\|^{2} \leq\left\|\frac{1}{\sqrt{k}} A x\right\|^{2} \leq(1+\epsilon)\|x\|^{2}\right) \geq 1-2 e^{-\left(\epsilon^{2}-\epsilon^{3}\right) k / 4}
$$

Other matrix factorizations

Singular value decomposition Elements of $\mathbf{U}, \mathbf{S}, \mathbf{V}$ in \mathbb{R}

Nonnegative matrix factorization (NMF)
Elements of $\mathbf{U}, \mathbf{S}, \mathbf{V}$ in \mathbb{R}_{+}

