Shameless plug for my course next quarter

CSE 599: Online and Adaptive Methods for Machine Learning.

Webpage: https://courses.cs.washington.edu/courses/cse599i/18wi/ Non-CSE need add-codes: https://goo.gl/forms/G76D6cOKNtdBlbe62

The standard approach to machine learning uses a training set of labeled examples to learn a prediction rule that will predict the labels of new examples. Collecting such training sets can be expensive and time-consuming. This course will explore methods that leverage already-collected data to guide future measurements, in a closed loop, to best serve the task at hand. We focus on two paradigms: i) in pure-exploration we desire algorithms that identify or learn a good model using as few measurements as possible (e.g., classification, drug discovery, science), and ii) in regret minimization we desire algorithms that balance taking measurements to learn a model with taking measurements to exploit the model to obtain high reward outcomes (e.g., medical treatment design, ad-serving). The course will assume introductory machine learning (e.g., CSE 546) and maturity in topics like linear algebra, statistics, and calculus. The course will be analysis heavy, with a focus on methods that work well in practice.

Practice

- Fill in the missing plots:

$$
\begin{aligned}
& \Sigma=\mathbf{X}^{T} \mathbf{J J X}=\mathbf{Z}^{T} \mathbf{J J Z} \\
& \mathbf{V S V}^{T}=\operatorname{eig}(\Sigma) \quad \mathbf{J}=I-\mathbf{1 1}^{T} / n \\
& \mu_{X}=\mathbf{X}^{T} \mathbf{1} / n \quad \mu_{Z}=\mathbf{Z}^{T} \mathbf{1} / n
\end{aligned}
$$

X Z
$\mu_{X}-\mu_{Z}$
$\mathbf{V} S^{-1 / 2} \mathbf{V}^{T}\left(\mu_{X}-\mu_{Z}\right)$

Principal Component Analysis (continued)

Machine Learning - CSE546 Kevin Jamieson
University of Washington
November 16, 2017

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} .
$$

where $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principal components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Principal Component Analysis (PCA) projects ($\mathbf{X}-\mathbf{1} \bar{x}^{T}$) down onto \mathbf{V}_{q}

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{q} \operatorname{diag}\left(d_{1}, \ldots, d_{q}\right) \quad \mathbf{U}_{q}^{T} \mathbf{U}_{q}=I_{q}
$$

Singular Value Decomposition defined as

$$
\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}
$$

Dimensionality reduction

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T}$

Power method - one at a time

$$
\begin{array}{ll}
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} & v_{*}=\arg \max _{v} v^{T} \Sigma v \\
v_{k+1}=\frac{\Sigma v_{k}}{\left\|\Sigma v_{k}\right\|} & v_{0} \sim \mathcal{N}(0, I)
\end{array}
$$

Matrix completion

Given historical data on how users rated movies in past:

17,700 movies, 480,189 users, 99,072,112 ratings
(Sparsity: 1.2\%)
Predict how the same users will rate movies in the future (for $\$ 1$ million prize)

Matrix completion

n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\left\|\left(U V^{T}\right)_{i, j}-s_{i, j}\right\|_{2}^{2}
$$

How do we solve it? With full information?

Matrix completion

n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\left\|\left(U V^{T}\right)_{i, j}-s_{i, j}\right\|_{2}^{2}
$$

Random projections

PCA finds a low-dimensional representation that reduces population variance

$$
\begin{array}{ll}
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} . & \begin{array}{l}
\mathbf{V}_{q} \mathbf{V}_{q}^{T} \text { is a projection matr } \\
\text { minimizes error in basis of }
\end{array} \\
\mathbf{V}_{q} \text { are the first } q \text { eigenvectors of } \Sigma & \Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
\end{array}
$$

But what if I care about the reconstruction of the individual points?

$$
\min _{\mathbf{W}_{q}} \max _{i=1, \ldots, n}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{W}_{q} \mathbf{W}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

Random projections

$$
\min _{\mathbf{W}_{q}} \max _{i=1, \ldots, n}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{W}_{q} \mathbf{W}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

Johnson-Lindenstrauss (1983)
Theorem 1.1. (Johnson-Lindenstrauss) Let $\epsilon \in(0,1 / 2)$. Let $Q \subset \mathbb{R}^{d}$ be a set of n points and $k=\frac{20 \log n}{\epsilon^{2}}$. There exists a Lipshcitz mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ such that for all $u, v \in Q$:
(independent of d)

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2}
$$

Theorem 1.2. (Norm preservation) Let $x \in \mathbb{R}^{d}$. Assume that the entries in $A \subset \mathbb{R}^{k \times d}$ are sampled independently from $N(0,1)$. Then,

$$
\operatorname{Pr}\left((1-\epsilon)\|x\|^{2} \leq\left\|\frac{1}{\sqrt{k}} A x\right\|^{2} \leq(1+\epsilon)\|x\|^{2}\right) \geq 1-2 e^{-\left(\epsilon^{2}-\epsilon^{3}\right) k / 4}
$$

Nonlinear dimensionality reduction

Find a low dimensional representation that respects "local distances" in the higher dimensional space

Many methods:

- Kernel PCA
- ISOMAP
- Local linear embedding
- Maximum volume unfolding
- Non-metric multidimensional scaling
- Laplacian
- Neural network auto encoder

Due to lack of agreed upon metrics, it is very hard to judge which is best. Also, results from 3 to 2 dims is probably not representative of 1000 to 2 dimensions.

Zhang et al 2010

- ...

Other matrix factorizations

Singular value decomposition

$$
\begin{aligned}
& \mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I, \mathbf{S}=\operatorname{drag}(s) \\
& \mathbf{U} \in \mathbb{R}^{n \times q}, \mathbf{V} \in \mathbb{R}^{m \times q}, s \in \mathbb{R}_{+}^{q} \\
& \quad \mathbf{X} \approx \mathbf{U}_{q} \mathbf{S}_{q} \mathbf{V}_{q}^{T}
\end{aligned}
$$

Nonnegative matrix factorization (NMF)

$$
\begin{aligned}
& \mathbf{W} \in \mathbb{R}_{+}^{n \times q} \text { with } \mathbf{W} \mathbf{1}=\mathbf{1} \\
& \mathbf{B} \in \mathbb{R}_{+}^{q \times n} \text { with } \mathbf{B 1}=\mathbf{1}
\end{aligned}
$$

$$
\mathrm{X} \approx \mathrm{WBX}
$$

Clustering

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 16, 2016

Clustering images

	Rend	bead	${ }^{4}$ 星	
［7\％）	圂平平			＊${ }^{*}$
		5上领	ET	ramy
	moxed			
	$0=3$		普	Exay

［Goldberger et al．］ 15

Clustering web search results

(Clusty) rece nows imapes wikipedia bloge lobs mores

All Resulte (z2)

- Car (2m)

(Race cars on
(F) Photos, Races Scheduled (9)

- Grme (41
- Track [刀]
- Nascar (2)
- Equipment And Salety (d)
- Other Topics (7)
(-) Photos (az)
(4) Game 190
(9) Definition (13)
(9) Team (ti)

O Human m

- Classification Of Human (a)
- Statement, Evolved (2)
- Other Topics (4)
(9) Weekend w
© Ethniolity And Race (7)
(-) Race for the Cure [il
- Race Information (in more I all clusters

Cluster Human cortains 8 documents.

1. Race (classification of human beings) - Wikiped a, the free ... © Q ©

The term race or racial group usualy refers to the concept of dividing humans into populations or groups on the basis of various sets of characteristics. The most widely used human racial categories are based on visble trats (especially skin color, crarial or facial features and hair bexture), and seff-idertification. Conceptions of race, as well as specfic ways of grouping races, vary by culure and over time, and ave often controversial for scientific as well as social and politeal reasons History - Mosem debutes • Polfical and ..
en.wijpedia.orgWikihace_(olassfication_of_human_beinga) - (cache| - Live, Ask
2. Race-Wikipedia, the free encyclopedia 8 Q

General. Racing compettions The Race (yachting race), or La course du miltraire, a no-rules round-the-worid sailing evenk; Race (biology), class tication of flora and fauna; Race (classification of human beings) Race and ethricity in the United States Census, official definitons of "race" used by the US Census Bureau; Race and genefics, notion of racial classifcations based on genetics. Historical definitons of race; Race (bearingl, the inner and ouler rings of a roling-element bearing. RACE in molecular biology "Rapid . General - Sumames - Television - Music Literature - Video games
en wikipedis. orplwiki/Race - |cache) - Live, Ask
3. Publications|Human Rights Watch $B Q \&$

The use of tortare, unlawful rendifion, secret prisons, urfair triabs.... Risks to Migrants, Refupees, and Asylum Seebers in Egypt and larael ... In fre run-up to the Beijing Olympics in August 200s.
wwwhrworgbackgrounderlusa/race - |cache| - Ask
4. Amazon com: Race: The Really Of Human Differences: Vincent Sarich... © Q e

Amazonicom: Race: The Reality Of Human Dfferences: Vincent Sarich, Frank Miele: Books ... From Publishers Weeily Sarich, a Berkoley emaritas anthropologist, and Miele, an edtor . wwwamazon.comRace-Reality-Diflerences-Vincent-Sarich/do/0813340651 - |cachel - Live
5. AAPA Statement on Biological Aspects of Race 8 Q e

AAPAStatement on Biological Aspects of Race ... Published in the American Joumal of Prysical Antropology. vol. 101, pp 569-570, 1996 .. PREAVBLE As scientists who study human evolution and variation,
www physanth_org/positions/race Htrrl - |cache| - Ask
6. race: Definition from Answers.com e a a
race n. A local gecgraphic or global human population distinguished as a more or less distinct group by peneficaly tranamitsed physical
Wwwanswers comtopichact-1 - (cache) - Live
7. Dopefish.com © \&

Sibe for newbies as wel as exserienced Dopelish folowers, ctronicing the birth of the Dopefish, is numerous appearances in several computer games, and is everthal take-over of the human race. Mairtained by Mr. Dopefish himserl, Joe Siogler of Apogee Software.
www.dopefish_oom - |cachel - Open Dinectory

Hierarchical Clustering

Pick one:

- Bottom up: start with every point as a cluster and merge
- Top down: start with a single cluster containing all points and split

Different rules for splitting/merging, no "right answer"

Gives apparently interpretable tree representation. However, warning: even random data with no structure will produce a tree that "appears" to be structured.

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until terminated!

K-means

- Randomly initialize k centers
$\square \mu^{(0)}=\mu_{1}{ }^{(0)}, \ldots, \mu_{\mathrm{k}}{ }^{(0)}$
- Classify: Assign each point $j \in\{1, \ldots N\}$ to nearest center:

$$
C^{(t)}(j) \leftarrow \arg \min _{i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Recenter: μ_{i} becomes centroid of its point:

$$
\mu_{i}^{(t+1)} \leftarrow \arg \min _{\mu} \sum_{j: C(j)=i}\left\|\mu-x_{j}\right\|^{2}
$$

\square Equivalent to $\mu_{\mathrm{i}} \leftarrow$ average of its points!

What is K-means optimizing?

- Potential function $\mathrm{F}(\mu, \mathrm{C})$ of centers μ and point allocations C:

$$
F(\mu, C)=\sum_{j=1}^{N_{1}}\left\|\mu_{C(j)}-x_{j}\right\|^{2}
$$

- Optimal K-means:
$\square \min _{\mu} \min _{C} F(\mu, C)$

Does K-means converge??? Part 1

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix μ, optimize C

Does K-means converge??? Part 2

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix C, optimize μ

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k -means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890-1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits $/$ pizel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890-1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

$=$

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher $(1890-1962)$ was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Typical output of k-means on patches

Similar reduced representation can be used as a feature vector
Coates, Ng, Learning Feature Representations with K-means, 2012

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \mathbf{W}_{i, j}=\text { weight of edge }(i, j) \\
& \mathbf{D}_{i, i}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{D}-\mathbf{W}
\end{aligned}
$$

Given feature vectors, could construct:

- k-nearest neighbor graph with weights in $\{0,1\}$
- weighted graph with arbitrary similarities $\mathbf{W}_{i, j}=e^{-\gamma\left\|x_{i}-x_{j}\right\|^{2}}$

Let $f \in \mathbb{R}^{n}$ be a function over the nodes

$$
\begin{aligned}
\mathbf{f}^{T} \mathbf{L} \mathbf{f} & =\sum_{i=1}^{N} g_{i} f_{i}^{2}-\sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} f_{i} f_{i^{\prime}} w_{i i^{\prime}} \\
& =\frac{1}{2} \sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} w_{i i^{\prime}}\left(f_{i}-f_{i^{\prime}}\right)^{2}
\end{aligned}
$$

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \mathbf{W}_{i, j}=\text { weight of edge }(i, j) \\
& \mathbf{D}_{i, i}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{D}-\mathbf{W}
\end{aligned}
$$

Given feature vectors, could construct:

- (k=10)-nearest neighbor graph with weights in $\{0,1\}$

Popular to use the Laplacian \mathbf{L} or its normalized form $\widetilde{\mathbf{L}}=I-\mathbf{D}^{-1} \mathbf{W}$ as a regularizer for learning over graphs

