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CSE 599: Online and Adaptive Methods for Machine Learning.  

Webpage: https://courses.cs.washington.edu/courses/cse599i/18wi/  
Non-CSE need add-codes: https://goo.gl/forms/G76D6cOKNtdBlbe62 

The standard approach to machine learning uses a training set of labeled 
examples to learn a prediction rule that will predict the labels of new examples. 
Collecting such training sets can be expensive and time-consuming. This 
course will explore methods that leverage already-collected data to guide future 
measurements, in a closed loop, to best serve the task at hand. We focus on 
two paradigms: i) in pure-exploration we desire algorithms that identify or learn 
a good model using as few measurements as possible (e.g., classification, drug 
discovery, science), and ii) in regret minimization we desire algorithms that 
balance taking measurements to learn a model with taking measurements to 
exploit the model to obtain high reward outcomes (e.g., medical treatment 
design, ad-serving). The course will assume introductory machine learning 
(e.g., CSE 546) and maturity in topics like linear algebra, statistics, and 
calculus. The course will be analysis heavy, with a focus on methods that work 
well in practice.



Practice
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• Fill in the missing plots:

X

J = I � 11T /n

Z

VSVT = eig(⌃)

⌃ = XTJJX = ZTJJZ

µX = XT1/n µZ = ZT1/n

VS�1/2VT (µX � µZ)µX � µZ
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Linear projections
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where is orthonormal:

Given xi 2 Rd
and some q < d consider

Vq are the first q eigenvectors of ⌃

Vq = [v1, v2, . . . , vq]

VT
q Vq = Iq

UT
q Uq = Iq

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T

X� 1x̄T = USVT

Singular Value Decomposition defined as

Vq are the first q principal components

Principal Component Analysis (PCA) projects (X� 1x̄T
) down onto Vq

(X� 1x̄T )Vq = Uqdiag(d1, . . . , dq)
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Dimensionality reduction
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Vq are the first q eigenvectors of ⌃

X� 1x̄T = USVTand SVD

X� 1x̄T
U1

U2



Power method - one at a time
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⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T v⇤ = argmax

v
vT⌃v

vk+1 =
⌃vk

||⌃vk||
v0 ⇠ N (0, I)



Matrix completion
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17,700 movies,  480,189 users,  99,072,112 ratings (Sparsity: 1.2%)

Given historical data on how users rated movies in past:

Predict how the same users will rate movies in the future (for $1 million prize)



Matrix completion
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n movies,  m users,  |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T )i,j � si,j ||22

How do we solve it? With full information?



Matrix completion
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n movies,  m users,  |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T )i,j � si,j ||22



Random projections
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VqVT
q is a projection matrix that

minimizes error in basis of size q

PCA finds a low-dimensional representation that reduces population variance

Vq are the first q eigenvectors of ⌃ ⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T

But what if I care about the reconstruction of the individual points? 

min

Wq

max

i=1,...,n
||(xi � x̄)�WqW

T
q (xi � x̄)||2



Random projections
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min

Wq

max

i=1,...,n
||(xi � x̄)�WqW

T
q (xi � x̄)||2

Johnson-Lindenstrauss (1983)

(independent of d)(independent of d)



Nonlinear dimensionality reduction
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Find a low dimensional representation that respects “local distances” in the higher 
dimensional space

Many methods: 
- Kernel PCA 
- ISOMAP 
- Local linear embedding 
- Maximum volume unfolding 
- Non-metric multidimensional scaling 
- Laplacian 
- Neural network auto encoder 
- … 

Due to lack of agreed upon metrics, 
it is very hard to judge which is 
best. Also, results from 3 to 2 dims 
is probably not representative of 
1000 to 2 dimensions.

Zhang et al 2010



Other matrix factorizations
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Nonnegative matrix factorization (NMF)

Singular value decomposition 

U
S VT

X =

UTU = I, VTV = I, S = drag(s)

X ⇡ UqSqV
T
q

U 2 Rn⇥q, V 2 Rm⇥q, s 2 Rq
+

W 2 Rn⇥q
+ with W1 = 1

B 2 Rq⇥n
+ with B1 = 1

X ⇡ WBX
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Clustering images

15[Goldberger et al.]

Set of Images
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Clustering web search results
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Hierarchical Clustering
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Pick one: 
- Bottom up: start with every point as a cluster and 

merge 
- Top down: start with a single cluster containing 

all points and split

Different rules for splitting/merging, no “right answer”

Gives apparently interpretable tree representation. 
However, warning: even random data with no 
structure will produce a tree that “appears” to be 
structured.
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Some Data
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints)
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. 

4. Each Center finds 
the centroid of the 
points it owns
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. 

4. Each Center finds 
the centroid of the 
points it owns… 

5. …and jumps there 

6. …Repeat until 
terminated!

23©Kevin Jamieson 2017
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K-means

■ Randomly initialize k centers 
 µ(0) = µ1

(0),…, µk
(0) 

■ Classify: Assign each point j∈{1,…N} to nearest 
center: 

  

■ Recenter: µi becomes centroid of its point: 
   

Equivalent to µi ← average of its points!
24©Kevin Jamieson 2017
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What is K-means optimizing? 

■ Potential function F(µ,C) of centers µ and point 
allocations C: 

  

■ Optimal K-means: 
minµminC F(µ,C) 

25

N
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Does K-means converge??? Part 1

■ Optimize potential function: 

■ Fix µ, optimize C
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Does K-means converge??? Part 2

■ Optimize potential function: 

■ Fix C, optimize µ

27©Kevin Jamieson 2017



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Vector Quantization (for compression)



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Vector Quantization (for compression)



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Similar reduced representation can be used as a feature vector

Vector Quantization (for compression)

Coates, Ng, Learning Feature Representations with K-means, 2012

Typical output of k-means  
on patches



Spectral Clustering
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Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- k-nearest neighbor graph with weights in {0,1} 
- weighted graph with arbitrary similarities

Di,i =
nX

j=1

Wi,j L = D�W

W
i,j

= e��||xi�xj ||2

Let f 2 Rn
be a

function over the nodes



Spectral Clustering
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Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- (k=10)-nearest neighbor graph with  

weights in {0,1}

Di,i =
nX

j=1

Wi,j L = D�W

Popular to use the Laplacian L or

its normalized form

eL = I �D�1W
as a regularizer for learning over graphs


