Announcements

- Homework 3 due tonight!
- HW 4 will be posted tonight. Start early.

Clustering

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 21, 2016

Clustering images

[Goldberger et al.] 3

Clustering web search results

Clusty wob nows impoes wikipedia bloge lobs mores

All Resulte (z2)

- Car (2m)

(Race cars on
(F) Photos, Races Scheduled (9)

- Grme (41
- Track [刀]
- Nascar (2)
- Equipment And Salety (d)
- Other Topics (7)
(-) Photos (az)
(4) Game 190
(9) Definition (13)
(9) Team (ti)

O Human m

- Classification Of Human (a)
- Statement, Evolved (2)
- Other Topics (4)
(9) Weekend w
© Ethniolity And Race (7)
(-) Race for the Cure [il
- Race Information (in more I all clusters

Cluster Human cortains 8 documents.

1. Race (classification of human beings) - Wikiped a, the free ... © Q ©

The term race or racial group usualy refers to the concept of dividing humans into populations or groups on the basis of various sets of characteristics. The most widely used human racial categories are based on visble trats (especially skin color, crarial or facial features and hair bexture), and seff-idertification. Conceptions of race, as well as apecfic ways of grouping races, vary by culure and over time, and ave often controversial for scientific as well as social and politeal reasons History - Mosem debutes • Polfical and ..
en.wijpedia.orgWikihace_(olassfication_of_human_beings) - (coche| - Live, Ask
2. Race-Wikipedia, the free encyclopedia 8 Q

General. Racing compettions The Race (yachting race), or La course du miltraire, a no-rules round-the-worid sailing evenk; Race (biology), class tication of flora and fauna; Race (classification of human beings) Race and ethricity in the United States Census, official definitons of "race" used by the US Census Bureau; Race and penefcs, notion of racial classifcations based or penetics. Historical definitions of race; Race (bearingl, the inner and ouler rings of a roling-element bearing. RACE in molecular biology "Rapid . General - Sumames - Television - Music Literature - Video games
en wikipedis. orplwiki/Race - |cache) - Live, Ask
3. Publications|Human Rights Watch $B Q \&$

The use of tortare, unlawful rendifion, secret prisons, urfair triabs.... Risks to Migrants, Refupees, and Asylum Seebers in Egypt and larael ... In fre run-up to the Beijing Olympics in August 200s.
wwwhrworgbackgrounderlusa/race - |cache| - Ask
4. Amazon com: Race: The Really Of Human Differences: Vincent Sarich... © Q e

Amazonicom: Race: The Reality Of Human Dfferences: Vincent Sarich, Frank Miele: Books ... From Publishers Weeily Sarich, a Berkoley emaritas anthropologist, and Miele, an edtor . wwwamazon.comRace-Real ty-Diflerences-Vincent-Sarich/do/0813340651 - |cachel - Live
5. AAPA Statement on Biological Aspects of Race 8 Q e

AAPAStatement on Biological Aspects of Race ... Published in the American Joumal of Prysical Antropology. vol. 101, pp 569-570, 1996 .. PREAVBLE As scientists who study human evolution and variation,
www physanth_org/positions/race Htrrl - |cache| - Ask
6. race: Definition from Answers.com e a a
race n. A local gecgraphic or global human population distinguished as a more or less distinct group by peneficaly tranamitsed physical
Wwwanswers comtopichact-1 - (cache) - Live
7. Dopefish.com © \&

Sibe for newbies as wel as exserienced Dopelish folowers, ctronicing the birth of the Dopefish, is numerous appearances in several computer games, and is everthal take-over of the human race. Mairtained by Mr. Dopefish himserl, Joe Siogler of Apogee Software.
www.dopefish_oom - |cachel - Open Dinectory

Hierarchical Clustering

Pick one:

- Bottom up: start with every point as a cluster and merge
- Top down: start with a single cluster containing all points and split

Different rules for splitting/merging, no "right answer"

Gives apparently interpretable tree representation. However, warning: even random data with no structure will produce a tree that "appears" to be structured.

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until terminated!

K-means

- Randomly initialize k centers
$\square \mu^{(0)}=\mu_{1}{ }^{(0)}, \ldots, \mu_{\mathrm{k}}{ }^{(0)}$
- Classify: Assign each point $j \in\{1, \ldots N\}$ to nearest center:

$$
C^{(t)}(j) \leftarrow \arg \min _{i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Recenter: μ_{i} becomes centroid of its point:

$$
\mu_{i}^{(t+1)} \leftarrow \arg \min _{\mu} \sum_{j: C(j)=i}\left\|\mu-x_{j}\right\|^{2}
$$

\square Equivalent to $\mu_{\mathrm{i}} \leftarrow$ average of its points!

What is K-means optimizing?

- Potential function $\mathrm{F}(\mu, \mathrm{C})$ of centers μ and point allocations C:

$$
F(\mu, C)=\sum_{j=1}^{N_{1}}\left\|\mu_{C(j)}-x_{j}\right\|^{2}
$$

- Optimal K-means:
$\square \min _{\mu} \min _{C} F(\mu, C)$

Does K-means converge??? Part 1

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix μ, optimize C

Does K-means converge??? Part 2

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix C, optimize μ

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k -means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890-1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits $/$ pizel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890-1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pizel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher $(1890-1962)$ was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Typical output of k-means on patches

Similar reduced representation can be used as a feature vector
Coates, Ng, Learning Feature Representations with K-means, 2012

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \mathbf{W}_{i, j}=\text { weight of edge }(i, j) \\
& \mathbf{D}_{i, i}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{D}-\mathbf{W}
\end{aligned}
$$

Given feature vectors, could construct:

- k-nearest neighbor graph with weights in $\{0,1\}$
- weighted graph with arbitrary similarities $\mathbf{W}_{i, j}=e^{-\gamma\left\|x_{i}-x_{j}\right\|^{2}}$

Let $f \in \mathbb{R}^{n}$ be a function over the nodes

$$
\begin{aligned}
\mathbf{f}^{T} \mathbf{L} \mathbf{f} & =\sum_{i=1}^{N} g_{i} f_{i}^{2}-\sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} f_{i} f_{i^{\prime}} w_{i i^{\prime}} \\
& =\frac{1}{2} \sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} w_{i i^{\prime}}\left(f_{i}-f_{i^{\prime}}\right)^{2}
\end{aligned}
$$

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \mathbf{W}_{i, j}=\text { weight of edge }(i, j) \\
& \mathbf{D}_{i, i}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{D}-\mathbf{W}
\end{aligned}
$$

Given feature vectors, could construct:

- (k=10)-nearest neighbor graph with weights in $\{0,1\}$

Popular to use the Laplacian \mathbf{L} or its normalized form $\widetilde{\mathbf{L}}=I-\mathbf{D}^{-1} \mathbf{W}$ as a regularizer for learning over graphs

Mixtures of Gaussians

Machine Learning - CSE546

Kevin Jamieson
University of Washington
November 21, 2016

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$$
\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n} \text { is observed data }
$$

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\ell(\theta ; \mathbf{Z})=\sum_{i=1}^{n} \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)+\pi \phi_{\theta_{2}}\left(y_{i}\right)\right]
$$

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\begin{aligned}
& \ell\left(\theta ; y_{i}, \Delta_{i}=0\right)= \\
& \ell\left(\theta ; y_{i}, \Delta_{i}=1\right)=
\end{aligned}
$$

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\ell(\theta ; \mathbf{Z}, \boldsymbol{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right]
$$

If we knew Δ, how would we choose θ ?

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\ell(\theta ; \mathbf{Z}, \boldsymbol{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right]
$$

If we knew θ, how would we choose $\boldsymbol{\Delta}$?

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\begin{aligned}
& \ell(\theta ; \mathbf{Z}, \boldsymbol{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right] \\
& \gamma_{i}(\theta)=\mathbb{E}\left[\Delta_{i} \mid \theta, \mathbf{Z}\right]=
\end{aligned}
$$

Mixture models

Algorithm 8.1 EM Algorithm for Two-component Gaussian Mixture.

1. Take initial guesses for the parameters $\hat{\mu}_{1}, \hat{\sigma}_{1}^{2}, \hat{\mu}_{2}, \hat{\sigma}_{2}^{2}, \hat{\pi}$ (see text).
2. Expectation Step: compute the responsibilities

$$
\begin{equation*}
\hat{\gamma}_{i}=\frac{\hat{\pi} \phi_{\hat{\theta}_{2}}\left(y_{i}\right)}{(1-\hat{\pi}) \phi_{\hat{\theta}_{1}}\left(y_{i}\right)+\hat{\pi} \phi_{\hat{\theta}_{2}}\left(y_{i}\right)}, i=1,2, \ldots, N . \tag{8.42}
\end{equation*}
$$

3. Maximization Step: compute the weighted means and variances:

$$
\begin{aligned}
\hat{\mu}_{1}=\frac{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right) y_{i}}{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)}, & \hat{\sigma}_{1}^{2}=\frac{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)\left(y_{i}-\hat{\mu}_{1}\right)^{2}}{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)}, \\
\hat{\mu}_{2}=\frac{\sum_{i=1}^{N} \hat{\gamma}_{i} y_{i}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}, & \hat{\sigma}_{2}^{2}=\frac{\sum_{i=1}^{N} \hat{\gamma}_{i}\left(y_{i}-\hat{\mu}_{2}\right)^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{i}},
\end{aligned}
$$

and the mixing probability $\hat{\pi}=\sum_{i=1}^{N} \hat{\gamma}_{i} / N$.
4. Iterate steps 2 and 3 until convergence.

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

-

After 3rd iteration

-

After 4th iteration

-

After 5th iteration

-

After 6th iteration

-

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data.

Resulting Density Estimator

Expectation Maximization Algorithm

The iterative gaussian mixture model (GMM) fitting algorithm is special case of EM:

Algorithm 8.2 The EM Algorithm.

1. Start with initial guesses for the parameters $\hat{\theta}^{(0)}$.
2. Expectation Step: at the j th step, compute

$$
\begin{equation*}
Q\left(\theta^{\prime}, \hat{\theta}^{(j)}\right)=\mathrm{E}\left(\ell_{0}\left(\theta^{\prime} ; \mathbf{T}\right) \mid \mathbf{Z}, \hat{\theta}^{(j)}\right) \tag{8.43}
\end{equation*}
$$

\mathbf{Z} is observed data
$\boldsymbol{\Delta}$ is unobserved data

$$
\mathbf{T}=(\mathbf{Z}, \boldsymbol{\Delta})
$$

as a function of the dummy argument θ^{\prime}.
3. Maximization Step: determine the new estimate $\hat{\theta}^{(j+1)}$ as the maximizer of $Q\left(\theta^{\prime}, \hat{\theta}^{(j)}\right)$ over θ^{\prime}.
4. Iterate steps 2 and 3 until convergence.

Missing data example

$$
\begin{gathered}
x_{i} \sim \mathcal{N}(\mu, \Sigma) \quad \text { but suppose some entries of } x_{i} \text { are missing } \\
\ell(\theta \mid \mathbf{T}, \theta)=-\frac{1}{2} \log (2 \pi|\Sigma|)+\left(x_{i}-\mu\right)^{T} \Sigma^{-1}(x-\mu) \quad \begin{array}{l}
\mathbf{Z} \text { is observed data } \\
\boldsymbol{\Delta} \text { is unobserved data } \\
\text { E Step: } \quad \mathbb{T}=(\mathbf{Z}, \boldsymbol{\Delta})
\end{array} \\
\\
\text { Natural choice for } \widehat{\theta}^{(0)} ?
\end{gathered}
$$

Missing data example

$$
\begin{array}{cc}
x_{i} \sim \mathcal{N}(\mu, \Sigma) \quad \text { but suppose some entries of } x_{i} \text { are missing } \\
& \\
\ell(\theta \mid \mathbf{T}, \theta)=-\frac{1}{2} \log (2 \pi|\Sigma|)+\left(x_{i}-\mu\right)^{T} \Sigma^{-1}(x-\mu) & \mathbf{\Delta} \text { is observed data } \\
& \mathbf{T}=(\mathbf{Z}, \boldsymbol{\Delta}) \\
\text { E Step: } \quad \mathbb{E}\left[\ell\left(\theta^{\prime} ; \mathbf{T}\right) \mid \mathbf{Z}, \widehat{\theta}^{(j)}\right] \quad \text { Natural choice for } \widehat{\theta}^{(0)} ? \\
& \mathbb{E}[Y \mid X=x]=\mu_{Y}+\Sigma_{Y X} \Sigma_{X X}^{-1}\left(x-\mu_{X}\right) \\
\text { M Step: } \quad \hat{\theta}^{(j+1)}=\arg \max _{\theta^{\prime}} \mathbb{E}\left[\ell\left(\theta^{\prime} ; \mathbf{T}\right) \mid \mathbf{Z}, \widehat{\theta}^{(j)}\right]
\end{array}
$$

Missing data example

$$
\begin{array}{cc}
x_{i} \sim \mathcal{N}(\mu, \Sigma) \quad \text { but suppose some entries of } x_{i} \text { are missing } \\
& \\
& \mathbf{Z} \text { is observed data } \\
\ell(\theta \mid \mathbf{T}, \theta)=-\frac{1}{2} \log (2 \pi|\Sigma|)+\left(x_{i}-\mu\right)^{T} \Sigma^{-1}(x-\mu) & \mathbf{\Delta} \text { is unobserved data } \\
& \mathbf{T}=(\mathbf{Z}, \boldsymbol{\Delta}) \\
\text { E Step: } \quad \mathbb{E}\left[\ell\left(\theta^{\prime} ; \mathbf{T}\right) \mid \mathbf{Z}, \widehat{\theta}^{(j)}\right] \quad \text { Natural choice for } \widehat{\theta}^{(0)} ? \\
& \mathbb{E}[Y \mid X=x]=\mu_{Y}+\Sigma_{Y X} \Sigma_{X X}^{-1}\left(x-\mu_{X}\right) \\
\text { M Step: } \quad \widehat{\theta}^{(j+1)}=\arg \max _{\theta^{\prime}} \mathbb{E}\left[\ell\left(\theta^{\prime} ; \mathbf{T}\right) \mid \mathbf{Z}, \widehat{\theta}^{(j)}\right]
\end{array}
$$

Connection to matrix factorization?

Density Estimation

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 21, 2016

Kernel Density Estimation

$$
f(x)=\sum_{m=1}^{M} \alpha_{m} \phi\left(x ; \mu_{m}, \mathbf{\Sigma}_{m}\right)
$$

A very "lazy" GMM

Kernel Density Estimation

CND

$$
f(x)=\sum_{m=1}^{M} \alpha_{m} \phi\left(x ; \mu_{m}, \boldsymbol{\Sigma}_{m}\right)
$$

Kernel Density Estimation

No Cro

$$
f(x)=\sum_{m=1}^{M} \alpha_{m} \phi\left(x ; \mu_{m}, \boldsymbol{\Sigma}_{m}\right)
$$

What is the Bayes optimal classification rule?
$\hat{r}_{i m}=\frac{\hat{\alpha}_{m} \phi\left(x_{i} ; \hat{\mu}_{m}, \hat{\Sigma}_{m}\right)}{\sum_{k=1}^{M} \hat{\alpha}_{k} \phi\left(x_{i} ; \hat{\mu}_{k}, \hat{\Sigma}_{k}\right)}$

Predict $\arg \max _{m} \widehat{r}_{i m}$

Generative vs Discriminative

