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Clustering web search results

web nows images wikipedia blogs jobs more »

All Rosults (1 remix
© Car
© Race cans )
© Photos, Races Scheduled v
¢ Gamae 4
® Track 2
® Nascar 2
@ Equipment And Safety
& Other Toplcs (1)
© Photos 22
© Game 14
© Definition (13
© Yoam (11
© Muman i
¢ Classification Of Human o
© Statement, Evelved 2
@ Other Topics («
© Weakerd
© Ethnicity And Race 7
© Race for the Cure »
¢ Race Information i»
more | il cusion

(rme))
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ThvhrmncoorrwamMwhbmmmdmhmommcgwwwhudvmmdm The most widely used human racal
CalGOres A Dased on visbie als (especially skin color, cranial o facial features and Par textun), and sell-identifcaton. Conceptions of race, &3 wel &3 306CHC witys of QAOupIng races, viry
by culture and over time, “n“mﬂhwrz‘cu-ﬂum‘ﬁw&c‘wuﬂm Modemn cebates « Poltcal and

on. wikipedia org'wWiiRace_(dasshication_of _human_beings

Race - Wikipedia, the free encyclopedia & A =

Gereral. Racing comgettions The Race (yachting race). or La course du milérare, a no-rnies round-the-word sailng event. Race (biology), classfcation of fiora and fauna; Race (dassification
of human beings) Race and ethncty in the Unted States Census, offical definitons of “race™ used by the US Cersus Bureau; Race and genetics, noton of racal classifcations based on
penetics. Mistorical defintons of race; Race (bearing), the nner and outer rings of a roling-element bearing. RACE in molecular biclogy "Rapd .. General - Surmames - Television - Music
Uterature - Video games

on. wiipedia. orp'WikiRace - [cache] - Live, Ask

Publications | Human Rights Walch ® 4 &
The use of 1orture, wnlawful rendition, secret prscns, usfar trisly, . Risks to Migrants, Refugees, and Asylum Seekars in Egypt and lsrsel .. In 1 runwp 10 the Beljng Olyrpics n August 2008,

WAW Rrw org Dack g de s race yoh A5«

' . : a . BaAs
Amazon.com ﬂ..u TMM”UWM WlSa\m Funh.M.h Sodu From Putiahans Weeidy Sanch, a Baraley emeniius antivepoiogst, and Misle, an editor
WAW amazor comRace: Real ty Oeroncer o a: 133400881 « i

AAPA Statement on Biological Aspects of Race ® 4 @
AAPA Staterment on Blological Aspects of Race ... Published in !he American Jounal of Priysical Anthvopoiogy. vol 101, pp 569570, 19656 . PREAMBLE As sclentists who study human
mmmm

waw shysanth cry/posstonsirace M - [cache) - Ase

race; Definition from Answers.com ® 4 &
race n Alo:dmrwhccrqhwhump@uwdw“umawmmwmwnmm

wWAW aNswWers. comiopcirace-1 - jcache] - Live

Dopefish.com ® 4 &

St for rewbies a3 well 83 experienced Dopefish folowens, chroniclng e birth of the Dopefiah, &5 numerous appearances n seversl compuler games, a7d ts evertual take-over of the human
race. Maintained by M« Doooh'mmul Joe Segler of Agogee Software.

www.dopefish com - [cache) - Open Directory
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Hierarchical Clustering
" I

Pick one:

- Bottom up: start with every point as a cluster and
merge

- Top down: start with a single cluster containing
all points and split

Different rules for splitting/merging, no “right answer’

Gives apparently interpretable tree representation.
However, warning: even random data with no
structure will produce a tree that “appears” to be
structured.
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K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)

©Kevin Jamieson 2017
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Auton’s CGraphics

K-means
" S

1. Ask user how many

clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations
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=| futon’s Graphics |3 1

K-means -
I

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k 0.6 T
cluster Center
locations

0.8 T

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center “owns’

a set of datapoints) | ,, &

%0
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= Auton’s Graphics [l

K-means -
I

]
1. Ask user how many
clusters they'd like.

(e.g. k=5)

2. Randomly guess k 0.6 T
cluster Center
locations

0.8 T

3. Each datapoint finds

out which Centerits | =" |
closest to.
4. Each Center finds
the centroid of the 0.z T
points it owns
Iy 0 0,2 0.4 0.6 0.8 1

%0
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K-means

1.

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!

©Kevin Jamieson 2017
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K-means
" JEE
= Randomly initialize k centers
u® = 1w, 0. O

= Classify: Assign each point j&{1,...N} to nearest
center:

CW(G) — argmin||p; — ;][>

= Recenter: u. becomes centroid of its point:

/.l.l(H_l) «— arg rr}lln Z || — .’L'j||2
j:CG)=i
Equivalent to u. < average of its points!

©Kevin Jamieson 2017 ©Kevin Jamieson 2017
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What is K-means optimizing”?

"
= Potential function F(u,C) of centers u and point
allocations C.:

N,
1 LA : . 2
F(u, C) = ) |lney — =l
J=1

= Optimal K-means:
min ming F(u,C)

©Kevin Jamieson 2017



Does K-means converge??? Part 1

" J—
= Optimize potential function:

k

. . \ . . - - D 2

min n}‘.!vnF(;:,,C,)_nwllln nzm%‘ | 2 .||p.,, |
=1 j:C'(j3)=i

= Fix u, optimize C

©Kevin Jamieson 2017



Does K-means converge??? Part 2

" JE——
= Optimize potential function:

k

. . \ . . - - D 2

rr}}nnyvnF(p,,C)_n”;llnn"(l_y_n'-_z | 2 .||p., ||
1=1j5:C(j)=i

= Fix C, optimize n

©Kevin Jamieson 2017



Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe mazrimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel. The center image is the result of 2 x 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel

16



Vector Quantization, Fisher Vectors
" A

B
Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

'?c;' R
oY
g/
.l
<\

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel. The center image is the result of 2 x 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel

17



Vector Quantization, Fisher Vectors

" S

Vector Quantization (for compression)
1. Represent image as grid of patches

2. Run k-means on the patches to build code book

3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe mazrimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel. The center image is the result of 2 x 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel

Typical output of k-means

on patches
RENELGZIERNTREAS

im;ﬁiiﬁ"ﬁ

Similar reduced representation can be used as a feature vector

Coates, Ng, Learning Feature Representations with K-means, 2012
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Spectral Clustering
" S

Adjacency matrix: W

W, ; = weight of edge (4, 7) : :/ \ '
Di,i:ZWi,j L=D-W : -
j=1 -
Given feature vectors, could construct: =

- k-nearest neighbor graph with weights in {0,1} .
- weighted graph with arbitrary similarities W, ; = e~ /lei=ill

Let f € R" be a fTLf = A f2 .
function over the nodes Z 9ifi Z Z fifowii

19



Spectral Clustering
" S

Adjacency matrix: W

W, ; = weight of edge (i, j) " ,
Dii=) Wi, L-D-W :
j=1 7 |
Given feature vectors, could construct: 2 o 1 4
- (k=10)-nearest neighbor graph with )
weights in {0,1} | Sgenvecters
j
5 s
g T
§ 8 T~
Popular to use the Laplacian L or § S —

its normalized form L =71 — D~'W
as a regularizer for learning over graphs R

Thard Smaiiest £igonvectr

02 03 o4 0%

(-3 ]

00

o0 oo 008

c o

Y

Nt

Spectral Clustering

-004 -0 000 o

Second Srabest [ gervecion
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Mixtures of

(Gaussians

Machine Learning — CSE546
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(One) bad case for k-means

= Clusters may overlap

2
ﬁ/ uﬂ/(y‘ ,0,) > = Some clusters may be
“‘wider” than others

©Kevin Jamieson 2017



(One) bad case for k-means

" JE—
= Clusters may overlap

= Some clusters may be
“‘wider” than others

©Kevin Jamieson 2017



Mixture models
"

il
- (z- ,\L 2 Y
i ~ N(/“!”f% :¢0 = '\r__—"t: e g /20', 3
Y2 ~ N(/‘Qvag)! ‘ de‘z ¢ I I
Y = 1-4)-h+A Y, o | HNNEEN lllllll
0 2 4 6

A € {0,1} with Pr(A =1) ==
Z = {y;}_, is observed data

If ¢g(x) is Gaussian density with parameters 6 = (i, 02) then

00;Z) = > log[(1 — 7)o, (i) + 7o, (1))

1=1

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 24



Mixture models 2(gz-n=6 Lzt

" —

Y1 ~ N(/‘h”f)’
Y2 ~ N(/‘21a:§)a
Y = (1-A)-"h+A Y,

00 02 04

IIIIII IIIIIII
A € {0,1} with Pr(A =1) == ¢
Z = {y;}_, is observed data

B o 2 2
0 = (m,0,,02) = (7, 1,07, p2,03) A = {A;}_, is unobserved data

If ¢g(x) is Gaussian density with parameters 6 = (i, 02) then

005 i, Ay = 0) = ’03(% (Y.) (c-rr) )
(B yis A = 1) = 07(‘66 [yc) TT >

20854 4.) = (1-4) Uﬁ((f )%, (4:))e A; loo(TT B, \)

©Kevin Jamieson 2017 Kevin Jamieson 2017



Mixture models
" S

o
Y
i ~ N(/“!”f% S
Y2 ~ N(uz03), & I I
V' o= (1-4)Yi+4-1, o | miunlin | [
A€ {0,1} with Pr(A=1) == 0 2 4 6

Z = {y;}_, is observed data

_ _ 2 2
0 = (m,01,02) = (m, 1,01, 2, 02) A = {A;}_, is unobserved data

If ¢g(x) is Gaussian density with parameters 6 = (i, 02) then

00,2, A) =) (1= A)log[(1 — 7)o, (yi)] + A; log(w e, (y:)]
— i=1 "
g \ <
If we knew A, how would we choose 07 M - (-0) (z, (-8)Y,
( )

+INp

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 26



Mixture models
"

i ~ N(m,0?), 3
Y2 ~ N(u2,03), &
Y = (1-4)-Y1+A-Y, . | ulunl® au
A€ {0,1} with Pr(A=1) == 0 2 4 6
Z = {y;}™_, is observed data
0= (m,01,02) = (11,01 2, 2) A = {A;}_, is unobserved data

If ¢g(x) is Gaussian density with parameters 6 = (i, 02) then

0(0;Z,A) = (1 - Ay)log[(1 — 7)o, (y:)] + A log(meo, (3:)]
i=1
If we knew 6, how would we choose A? [E[Au ' 8, Z‘Kl (P(A;: ' [ﬁ, ?’)

_ T &aly)
T -G () + T8(5e)

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 27




Mixture models
" S

H
Y
Yi ~ N(/‘Iv(’f)’ 3
Y2 ~ N(uz2,03%), g I I
Y = 1-4A)-1+4A.Y,, S oHoE 'l lllllll
0 2 4 6

A € {0,1} with Pr(A =1) ==
Z = {y;}_, is observed data

_ _ 2 2
0 = (m,01,02) = (m, 1,01, 2, 02) A = {A;}_, is unobserved data

If ¢g(x) is Gaussian density with parameters 6 = (i, 02) then

0(0;Z,A) = (1 - Ay)log[(1 — 7)o, (y:)] + A log(meo, (3:)]

=1

v:(0) = E[A|0, Z] =

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 28



Mixture models
" S

Algorithm 8.1 EM Algorithm for Two-component Gaussian Mixture.

1. Take initial guesses for the parameters ji,, a7, fiz, 03, % (see text).
2. Ezxpectation Step: compute the responsibilities
. 7dg, (i) .
i A= . - ,i=1,2,...,N. (8.42)
E4:16, 2]~% = T8, ) + 75,0

3. Mazximization Step: compute the weighted means and variances:

Z,N:l(l — %i)yi 2 _ Z?’:l(l — i) (g — in)?

[‘l — N N ’ oy = N N ’
Z::l(l —‘)') Zi:l(l —‘7l)
=N . N . "
fiz = L:=1 Yi¥Vi G2 = Zi:l Yi(ys — #2)2
- N . ? 2~ N . ’
2 i=1%i 2= i

and the mixing probability & = Z:i, 4/N.

4. Iterate steps 2 and 3 until convergence.

©Kevin Jamieson 2017 ©Kevin Jamieson 2017
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Gaussian Mixture Example: Start—

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 30



After first iteration
" I

©Kevin Jamieson 2017



After 2nd iteration

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 32



After 3rd iteration

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 33



After 4th iteration

©Kevin Jamieson 2017



After 5th iteration

©Kevin Jamieson 2017



After 6th iteration

©Kevin Jamieson 2017



After 20th iteration

©Kevin Jamieson 2017



Some Bio Assay data

P
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GMM clustering of the assay data
" S

ilog( 2 I )~ Lz Tt pe)

L

©Kevin Jamieson 2017



"
Resulting
Density
Estimator




Expectation Maximization Algorithm
*

The iterative gaussian mixture model (GMM) fitting algorithm is special case of EM:

Algorithm 8.2 The EM Algorithm.

1.
2.

Start with initial guesses for the parameters 0©),
Expectation Step: at the jth step, compute
fuac l?w Q(0,09)) = E((0'; T)|Z, 09) (8.43)
o~
as a° un?liou of the dummy argument #'.

Mazimization Step: determine the new estimate 6U+1) a5 the maxi-
mizer of Q(#',01)) over ¢'.

. Iterate steps 2 and 3 until convergence.

©Kevin Jamieson 2017 ©Kevin Jamieson 2017

Z is observed data

A is unobserved data

T = (Z,A)

41



Missing data example
"
T, ~~ N ( M, E) but suppose some entries of x; are missing

x:= 2]
¢ ‘ Z is observed data

1 ) " A is unobserved data
(81T, 6) =~ log(2x|S)) + (77 — )™ (& — p) RN

E Step: EW@I; T)|Z, H(j)] Natural choice for 8(0?

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 42



Missing data example
“ JEEE—

T, ~~ N ( M, E) but suppose some entries of x; are missing

Z is observed data

A is unobserved data

HOT.0) =~ logrl3l) o= )BT

. /. n(5) ~
E Step: El¢(6";T)|Z,0V] Natural choice for #(9)?
EY|X =2] = py + Sy xSy (@ — px)

M Step: PUtD = arg max E[((¢'; T)|Z, U]

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 43



Missing data example
" JEE—

T, ~~ N ( M, E) but suppose some entries of x; are missing

Z is observed data

A is unobserved data

HOT.0) =~ logrl3l) o= )BT

. /. n(5) ~
E Step: El¢(6";T)|Z,0V] Natural choice for #(9)?
EY|X = 2] = py + Sy xSy (¢ — px)

MStep: U = argmaxE[((0'; T)|Z, 0V

Connection to matrix factorization?

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 44
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Kernel Density Estimation

H
&
<
o
o ¥
@ ©
E ©
&
z 3
2 o
° 3
(=)
o
o ALl LSURELR S )l » !II | | | | -
100 120 140 160 180 200 220
Systolic Blood Pressure (for CHD group)
M
f(z) = E A O(T; fhny 2 A very “lazy” GMM
m=1

©Kevin Jamieson 2017 ©Kevin Jamieson 2017

46



Kernel Density Estimation

:
L T
34 3 n /.—\\_/\
M
f(.’L‘) = Z am¢($,ﬂma 2m)
m=1

©Kevin Jamieson 2017 ©Kevin Jamieson 2017
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Kernel Density Estimation

What is the Bayes
optimal classification
rule?

Mo (st
[ [ c s aw
s A & 2
-
M (e
© °

\1
2

LI LI oL LIl . dm¢(a:,-;;2,,,,)f:m)
rim— M N R A
> k=1 OkP(i; fir, X

Predict arg max,, Timn
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Generative vs Discriminative
" S
Y"‘ (,/u;/ ([/“C/cr_c 2
Fl"{S C[el\.fc \f TXy 'éo Y aac.l }'/

cnd éL,\ tree s Rt ed derscfé s
CS ~l—ruﬂ\ , wuel QPF//(_( ofémq, C/l.!‘fl flccd{l\’l

G eeelve cule -

D(‘IC(Q‘M (-nc\'l\-l»(: M‘t"l’l} rne cfé,# L= Lof Jg\g[‘ké—f’
OA(‘j ";»/5 ﬁ/\c{}.m éZ) JéLl}PW\ gOm’\le_/y

¢2: P(x=2>=P(r:2)3
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