
Announcements
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• Homework 3 due tonight!  

• HW 4 will be posted tonight. Start early.
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Clustering images

3[Goldberger et al.]

Set of Images
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Clustering web search results
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Hierarchical Clustering

5

Pick one: 
- Bottom up: start with every point as a cluster and 

merge 
- Top down: start with a single cluster containing 

all points and split

Different rules for splitting/merging, no “right answer”

Gives apparently interpretable tree representation. 
However, warning: even random data with no 
structure will produce a tree that “appears” to be 
structured.
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Some Data
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints)
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. 

4. Each Center finds 
the centroid of the 
points it owns
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. 

4. Each Center finds 
the centroid of the 
points it owns… 

5. …and jumps there 

6. …Repeat until 
terminated!
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K-means

■ Randomly initialize k centers 
 µ(0) = µ1

(0),…, µk
(0) 

■ Classify: Assign each point j∈{1,…N} to nearest 
center: 

  

■ Recenter: µi becomes centroid of its point: 
   

Equivalent to µi ← average of its points!
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What is K-means optimizing? 

■ Potential function F(µ,C) of centers µ and point 
allocations C: 

  

■ Optimal K-means: 
minµminC F(µ,C) 

13

N
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Does K-means converge??? Part 1

■ Optimize potential function: 

■ Fix µ, optimize C
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Does K-means converge??? Part 2

■ Optimize potential function: 

■ Fix C, optimize µ

15©Kevin Jamieson 2017



Vector Quantization, Fisher Vectors

16

1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Vector Quantization (for compression)



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Vector Quantization (for compression)



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Similar reduced representation can be used as a feature vector

Vector Quantization (for compression)

Coates, Ng, Learning Feature Representations with K-means, 2012

Typical output of k-means  
on patches



Spectral Clustering
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Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- k-nearest neighbor graph with weights in {0,1} 
- weighted graph with arbitrary similarities

Di,i =
nX

j=1

Wi,j L = D�W

W
i,j

= e��||xi�xj ||2

Let f 2 Rn
be a

function over the nodes



Spectral Clustering
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Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- (k=10)-nearest neighbor graph with  

weights in {0,1}

Di,i =
nX

j=1

Wi,j L = D�W

Popular to use the Laplacian L or

its normalized form

eL = I �D�1W
as a regularizer for learning over graphs
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Mixtures of 
Gaussians
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(One) bad case for k-means

■ Clusters may overlap 
■ Some clusters may be 

“wider” than others
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(One) bad case for k-means

■ Clusters may overlap 
■ Some clusters may be 

“wider” than others
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Mixture models
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Y

`(✓;Z) =
nX

i=1

log[(1� ⇡)�✓1(yi) + ⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then
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Mixture models
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Y

`(✓; yi,�i = 0) =

`(✓; yi,�i = 1) =

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data
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Mixture models
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Y

`(✓;Z,�) =

nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

If we knew �, how would we choose ✓?
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Mixture models
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Y

`(✓;Z,�) =

nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

If we knew ✓, how would we choose �?
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Mixture models
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Y

`(✓;Z,�) =

nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

�i(✓) = E[�i|✓,Z] =
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Mixture models
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Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration

©Kevin Jamieson 2017



©Kevin Jamieson 2017 37

After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting 
Density 
Estimator
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Expectation Maximization Algorithm
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The iterative gaussian mixture model (GMM) fitting algorithm is special case of EM:

Z is observed data

� is unobserved data

T = (Z,�)
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Missing data example
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xi ⇠ N (µ,⌃)
but suppose some entries of xi are missing

`(✓|T, ✓) = �1

2

log(2⇡|⌃|) + (xi � µ)

T
⌃

�1
(x� µ)

Z is observed data

� is unobserved data

T = (Z,�)

E[`(✓0;T)|Z, b✓(j)]E Step:
Natural choice for

b✓(0)?
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Missing data example
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xi ⇠ N (µ,⌃)
but suppose some entries of xi are missing

`(✓|T, ✓) = �1

2

log(2⇡|⌃|) + (xi � µ)

T
⌃

�1
(x� µ)

Z is observed data

� is unobserved data

T = (Z,�)

E[`(✓0;T)|Z, b✓(j)]E Step:

b✓(j+1)
= argmax

✓0
E[`(✓0;T)|Z, b✓(j)]M Step:

Natural choice for

b✓(0)?

E[Y |X = x] = µY + ⌃Y X⌃�1
XX(x� µX)
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Missing data example
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xi ⇠ N (µ,⌃)
but suppose some entries of xi are missing

`(✓|T, ✓) = �1

2

log(2⇡|⌃|) + (xi � µ)

T
⌃

�1
(x� µ)

Z is observed data

� is unobserved data

T = (Z,�)

E[`(✓0;T)|Z, b✓(j)]E Step:

b✓(j+1)
= argmax

✓0
E[`(✓0;T)|Z, b✓(j)]M Step:

Natural choice for

b✓(0)?

Connection to matrix factorization?

E[Y |X = x] = µY + ⌃Y X⌃�1
XX(x� µX)
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Density Estimation
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Kernel Density Estimation
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A very “lazy” GMM
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Kernel Density Estimation
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Kernel Density Estimation
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Predict argmaxm brim

What is the Bayes 
optimal classification 
rule?
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Generative vs Discriminative
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