Announcements

- HW4 requires installing software.
- Poster session December 7

Hyperparameter Optimization

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 28, 2017

00000000000000000000 11111111111111111111
222 2 2 2 2 2 2 2 2 2 2 2 22 222
33333333333333333333
44444444444444444444
55555555555555555555
66666666666666666666
77777777777777777777
88888888888888888888
99999999499999999994

$$
\begin{aligned}
& 00000000000000 \\
& 111111111111111 \\
& 22222222222222 \\
& 33333333333333 \\
& 444 \\
& 555 \text { Training set1454 } \\
& 66666666666666 \\
& 77777777777777 \\
& 88888888888888 \\
& 99999999499999
\end{aligned}
$$

000000
222222
333333
Eval set
666666
777777
888888
999999

000000
 111111 222222
333333
Eval set
666666
777777
888888
999999
hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
\# hidden nodes $N_{h i d} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters

$$
\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)
$$

hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
$\#$ hidden nodes $N_{\text {hid }} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters
$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$

Eval-loss
0.0577

000000
111111
222222
333333
Eval set
666666
777797
888888
999994

hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
\# hidden nodes $N_{\text {hid }} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters

$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$	0.0577
$\left(10^{-1.0}, 10^{-1.2}, 10^{2.6}\right)$	0.182

Eval-loss
0.0577
0.182
hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
\# hidden nodes $N_{h i d} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters

$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$	0.0577
$\left(10^{-1.0}, 10^{-1.2}, 10^{2.6}\right)$	0.182
$\left(10^{-1.2}, 10^{-5.7}, 10^{1.4}\right)$	0.0436

hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
\# hidden nodes $N_{\text {hid }} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters

$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$	0.0577
$\left(10^{-1.0}, 10^{-1.2}, 10^{2.6}\right)$	0.182
$\left(10^{-1.2}, 10^{-5.7}, 10^{1.4}\right)$	0.0436
$\left(10^{-2.4}, 10^{-2.0}, 10^{2.9}\right)$	0.0919
$\left(10^{-2.6}, 10^{-2.9}, 10^{1.9}\right)$	0.0575
$\left(10^{-2.7}, 10^{-2.5}, 10^{2.4}\right)$	0.0765
$\left(10^{-1.8}, 10^{-1.4}, 10^{2.6}\right)$	0.1196
$\left(10^{-1.4}, 10^{-2.1}, 10^{1.5}\right)$	0.0834
$\left(10^{-1.9}, 10^{-5.8}, 10^{2.1}\right)$	0.0242
$\left(10^{-1.8}, 10^{-5.6}, 10^{1.7}\right)$	0.029

hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
\# hidden nodes $N_{\text {hid }} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters

$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$	0.0577
$\left(10^{-1.0}, 10^{-1.2}, 10^{2.6}\right)$	0.182
$\left(10^{-1.2}, 10^{-5.7}, 10^{1.4}\right)$	0.0436
$\left(10^{-2.4}, 10^{-2.0}, 10^{2.9}\right)$	0.0919
$\left(10^{-2.6}, 10^{-2.9}, 10^{1.9}\right)$	0.0575
$\left(10^{-2.7}, 10^{-2.5}, 10^{2.4}\right)$	0.0765
$\left(10^{-1.8}, 10^{-1.4}, 10^{2.6}\right)$	0.1196
$\left(10^{-1.4}, 10^{-2.1}, 10^{1.5}\right)$	0.0834
$\left(10^{-1.9}, 10^{-5.8}, 10^{2.1}\right)$	0.0242
$\left(10^{-1.8}, 10^{-5.6}, 10^{1.7}\right)$	0.029

Eval-loss

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
\# hidden nodes $N_{\text {hid }} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters
$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$
$\left(10^{-1.0}, 10^{-1.2}, 10^{2.6}\right)$
$\left(10^{-1.2}, 10^{-5.7}, 10^{1.4}\right)$
$\left(10^{-2.4}, 10^{-2.0}, 10^{2.9}\right)$
$\left(10^{-2.6}, 10^{-2.9}, 10^{1.9}\right)$
$\left(10^{-2.7}, 10^{-2.5}, 10^{2.4}\right)$
$\left(10^{-1.8}, 10^{-1.4}, 10^{2.6}\right)$
$\left(10^{-1.4}, 10^{-2.1}, 10^{1.5}\right)$
$\left(10^{-1.9}, 10^{-5.8}, 10^{2.1}\right)$
$\left(10^{-1.8}, 10^{-5.6}, 10^{1.7}\right)$

Eval-loss

$$
\begin{aligned}
& 0.0577 \\
& 0.182 \\
& 0.0436 \\
& 0.0919 \\
& 0.0575 \\
& 0.0765 \\
& 0.1196 \\
& 0.0834 \\
& 0.0242 \\
& 0.029
\end{aligned}
$$

How do we choose hyperparameters to train and evaluate?

How do we choose hyperparameters to train and evaluate?

Grid search:

Hyperparameters on 2d uniform grid

How do we choose hyperparameters to train and evaluate?

Grid search:

Hyperparameters on 2d uniform grid

Random search:

Hyperparameters randomly chosen

How do we choose hyperparameters to train and evaluate?

Grid search:

Hyperparameters on 2d uniform grid

Random search:

Hyperparameters randomly chosen

Bayesian Optimization:

Hyperparameters adaptively chosen

Bayesian Optimization:

How does it work?

E. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, T. Kraska.
"Automating Model Search for Large Scale Machine Learning," In Symposium on Cloud Computing, 2015.

E. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, T. Kraska. "Automating Model Search for Large Scale Machine Learning," In Symposium on Cloud Computing, 2015.

~15 dimensional hyperparameter space
Test error of output hyperparameter setting from each searcher after I hour per dataset

Test Error on Datasets
Li et al 2016

~15 dimensional hyperparameter space
Test error of output hyperparameter setting from each searcher after I hour per dataset

Test Error on 117 Datasets
Li et al 2016

Recent work attempts to speed up hyperparameter evaluation by stopping poor performing settings before they are fully trained.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014.
Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for computationally adaptive model selection. COLT, 2012.
Domhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In IJCAI, 2015.

András György and Levente Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.
Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. ICLR 2016.

Hyperparameters
$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$
$\left(10^{-1.0}, 10^{-1.2}, 10^{2.6}\right)$
$\left(10^{-1.2}, 10^{-5.7}, 10^{1.4}\right)$
$\left(10^{-2.4}, 10^{-2.0}, 10^{2.9}\right)$
$\left(10^{-2.6}, 10^{-2.9}, 10^{1.9}\right)$
$\left(10^{-2.7}, 10^{-2.5}, 10^{2.4}\right)$
$\left(10^{-1.8}, 10^{-1.4}, 10^{2.6}\right)$
$\left(10^{-1.4}, 10^{-2.1}, 10^{1.5}\right)$
$\left(10^{-1.9}, 10^{-5.8}, 10^{2.1}\right)$
$\left(10^{-1.8}, 10^{-5.6}, 10^{1.7}\right)$
Eval-loss
0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
$\left(10^{-1 .}, 10^{\left.-5,10^{-1}\right)} 0.0242\right.$
0.029

Hyperparameter Optimization

In general, hyperparameter optimization is non-convex optimization and little is known about the underlying function (only observe validation loss)

Your time is valuable, computers are cheap:
Do not employ "grad student descent" for hyper parameter search. Write modular code that takes parameters as input and automate this embarrassingly parallel search. Use crowd resources (see pywren)

Tools for different purposes:

- Very few evaluations: use random search (and pray) or be clever
- Few evaluations and long-running computations: see refs on last slide
- Moderate number of evaluations (but still exp(\#params)) and high accuracy needed: use Bayesian Optimization
- Many evaluations possible: use random search.Why overthink it?

Convolutional Neural Networks \& Application to Computer Vision

Machine Learning - CSE4546 Kevin Jamieson University of Washington

November 28, 2017

Contains slides from...

- LeCun \& Ranzato
- Russ Salakhutdinov
- Honglak Lee
- Google images...

Convolution of images

1	1	1	0	0
$\mathbf{0}$	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Image I

1	0	1
0	1	0
1	0	1

Filter K

$1_{x a}$	$1_{x 0}$	$1_{x a}$	0	0
$0_{x 0}$	$1_{x a}$	$1_{x 0}$	1	0
$0_{x a}$	$0_{x 0}$	$1_{x a}$	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved
Feature
$I * K$

Convolution of images

1	1	1	0	0
$\mathbf{0}$	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Image I

1	0	1
0	1	0
1	0	1

Filter K

$1_{x a}$	$1_{x 0}$	$1_{x a}$	0	0
$0_{x 0}$	$1_{x a}$	$1_{x 0}$	1	0
$0_{x a}$	$0_{x 0}$	$1_{x a}$	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved
Feature
$I * K$

Convolution of images

$(I * K)(i, j)=\sum_{m} \sum_{n} I(i+m, j+n) K(m, n)$

Image I

Operation	Filter	Convolved
Image		

Convolution of images

Input image X

Stacking convolved images

Stacking convolved images

Stacking convolved images

Apply Non-linearity to the output of each layer, Here: ReLu (rectified linear unit)

Other choices: sigmoid, arctan

Stacking convolved images

Apply Non-linearity to the output of each layer, Here: ReLu (rectified linear unit)

Other choices: sigmoid, arctan

Pooling

Single depth slice
Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"

1	1	2	4	max pool with 2×2 filters and stride 2	$6 \quad 8$	
5	6	7	8			
3	2	1	0		3	4
1	2	3	4			

Pooling Convolution layer

Full feature pipeline

Flatten into a single vector of size 14*14*64=12544

How do we choose all the hyperparameters?
How do we choose the filters?

- Hand design them (digital signal processing, c.f. wavelets)
- Learn them (deep learning)

Some hand-created image features

Spin Image

RIFT

(a)
(b)

(c)

GLOH

Mini case study 1/3

Inspired by Coates and Ng (2012)

Input is CIFAR-10 dataset: 50000 examples of $32 \times 32 \times 3$ images

1. Construct set of patches by random selection from images
2. Standardize patch set (de-mean, norm 1, whiten, etc.)
3. Run k-means on random patches
4. Convolve each image with all patches (plus an offset)
5. Push through ReLu
6. Solve least squares for multiclass classification
7. Classify with argmax

Mini case study 2/3

Methods of standardization:

Mini case study 3/3

Dealing with class imbalance:

Convolution Layer

Example: 200×200 image

- Fully-connected, 400,000 hidden units $=16$ billion parameters

Locally-connected, 400,000 hidden units 10×10 fields $=40$ million params
Local connections capture local dependencies

Could be very complicated...

Feature Extraction from Image
Classification

Learn the convolutional filters using back propagation.
Once learned, you can fix and apply the learned features to other datasets, and only learn the last fully connected layers.

Could be very complicated...

Different architectures have different effects (not well understood)

Example from Krizhevsky, Sutskever, Hinton 2012

Won the 2012 ImageNet LSVRG $\mathbf{6 0}$ Million parameters, 832M MACops

Using neural nets to learn non-linear features

Feature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]

Sequences and Recurrent Neural Networks

Machine Learning - CSE4546 Kevin Jamieson University of Washington

November 28, 2017

Variable length sequences

Images are usually standardized to be the same size (e.g., 256x256x3)

But what if we wanted to do classification on country-of-origin for names?

Variable length sequences

Recurrent Neural Network

Basic Text/Document Processing

Machine Learning - CSE4546 Kevin Jamieson University of Washington

November 28, 2017

TF*

n documents/articles with lots of text
How to get a feature representation of each article?

1. For each document d compute the proportion of times word t occurs out of all words in d, i.e. term frequency

$$
T F_{d, t}
$$

2. For each word t in your corpus, compute the proportion of documents out of n that the word t occurs, i.e., document frequency

$$
D F_{t}
$$

3. Compute score for word t in document d as $T F_{d, t} \log \left(\frac{1}{D F_{t}}\right)$

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Two Hearted Ale - Input ~2500 natural language reviews

http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

3.8 aroma 8/10 appearance $4 / 5$ taste $8 / 10$ palate $3 / 5$ overall $15 / 20$
fonefan (25678) - VestJylland, DENMARK - JAN 18, 2009

Bottle 355ml.

Clear light to medium yellow orange color with a average, frothy, good lacing, fully lasting, off-white head. Aroma is moderate to heavy malty, moderate to heavy hoppy, perfume, grapefruit, orange shell, soap. Flavor is moderate to heavy sweet and bitter with a average to long duration. Body is medium, texture is olly, carbonation is soft. [250908]

4 aroma $8 / 10$ appearance $4 / 5$ taste $7 / 10$ palate $4 / 5$ overall $17 / 20$
Ungstrup (24358) - Oamaru, NEW ZEALAND - MAR 31, 2005

An orange beer with a huge off-white head. The aroma is sweet and very freshly hoppy with notes of hop oils very powerful aroma. The flavor is sweet and quite hoppy, that gives flavors of oranges, flowers as well as hints of grapefruit. Very refreshing yet with a powerful body.

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric multidimensional scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric multidimensional scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

```
Weighted count vector
for the ith beer:
zi}\in\mp@subsup{\mathbb{R}}{}{400,000
```

Cosine distance:

$$
d\left(z_{i}, z_{j}\right)=1-\frac{z_{i}^{T} z_{j}}{\left\|z_{i}\right\|\left\|z_{j}\right\|}
$$

Two Hearted Ale - Nearest Neighbors:
Bear Republic Racer 5
Avery IPA
Stone India Pale Ale \&\#40;IPA\&\#41;
Founders Centennial IPA
Smuttynose IPA
Anderson Valley Hop Ottin IPA
AleSmith IPA
BridgePort IPA
Boulder Beer Mojo IPA
Goose Island India Pale Ale Great Divide Titan IPA New Holland Mad Hatter Ale Lagunitas India Pale Ale
Heavy Seas Loose Cannon Hop3 Sweetwater IPA

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric
multidimensional
scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$
Find an embedding $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$ such that $\left\|x_{k}-x_{i}\right\|<\left\|x_{k}-x_{j}\right\|$ whenever $d\left(z_{k}, z_{i}\right)<d\left(z_{k}, z_{j}\right)$ for all 100-nearest neighbors. distance in 400,000 (10^{7} constraints, 10^{5} variables) dimensional "word space" Solve with hinge loss and stochastic gradient descent. (20 minutes on my laptop) $(d=2, \mathrm{err}=6 \%)(d=3, \mathrm{err}=4 \%)$

Could have also used local-linear-embedding, max-volume-unfolding, kernel-PCA, etc.

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric multidimensional scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric multidimensional scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric
multidimensional
scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric
multidimensional
scaling

Embedding in d dimensions

Other document modeling

Matrix factorization:

1. Construct word x document matrix of counts
2. Compute non-negative matrix factorization
3. Use factorization to represent documents
4. Cluster documents into topics

Also see latent Dirichlet factorization (LDA)

