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How does it work?



E. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, T. Kraska. 
“Automating Model Search for Large Scale Machine Learning,” In 
Symposium on Cloud Computing, 2015.



Bayes Opt  
Search

Naive 
Search

E. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, T. Kraska. 
“Automating Model Search for Large Scale Machine Learning,” In 
Symposium on Cloud Computing, 2015.
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How computation time 
was spent?

András György and Levente Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014. 

Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for computationally adaptive model selection. COLT, 2012. 

Domhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by 
extrapolation of learning curves. In IJCAI, 2015. 

Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. ICLR 2016.

Recent work attempts to speed up hyperparameter evaluation by 
stopping poor performing settings before they are fully trained.



Hyperparameter Optimization

In general, hyperparameter optimization is 
non-convex optimization and little is 
known about the underlying function (only 
observe validation loss)

Tools for different purposes:
- Very few evaluations: use random search (and pray) or be clever
- Few evaluations and long-running computations: see refs on last slide
- Moderate number of evaluations (but still exp(#params)) and high 

accuracy needed: use Bayesian Optimization
- Many evaluations possible: use random search. Why overthink it?

Your time is valuable, computers are cheap:  
Do not employ “grad student descent” for hyper parameter search.  
Write modular code that takes parameters as input and automate this 
embarrassingly parallel search. Use crowd resources (see pywren)
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Convolutional Neural Networks &  
Application to Computer Vision

Machine Learning – CSE4546 
Kevin Jamieson 
University of Washington 

November 28, 2017
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Contains slides from…

■ LeCun & Ranzato 
■ Russ Salakhutdinov 
■ Honglak Lee 
■ Google images…

23
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(Note to EEs: deep learning uses the word “convolution” 
to mean what is usually known as  “cross-correlation”, 
e.g., neither signal is flipped)

Slide credit: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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Convolution of images

filters Hk
convolved image

Hk ⇤X

flatten

into vector

2

64
vec(H1 ⇤X)
vec(H2 ⇤X)

...

3

75

Input image X
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(rectified linear unit)

Other choices: sigmoid, arctan
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Pooling

29

Pooling reduces the 
dimension and can be 
interpreted as “This filter had 
a high response in this 
general region”

27x27x64
14x14x64
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Pooling Convolution layer

30

14x14x64

64 filters

6

6

3 27

27

MaxPool with 
2x2 filters 
and stride 2

Convolve 
with 64 6x6x3 filters
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Full feature pipeline

31

14x14x64

64 filters

6

6

3 27

27

Convolve 
with 64 6x6x3 filters

MaxPool with 
2x2 filters 
and stride 2

Flatten into a single 
vector of size 
14*14*64=12544

How do we choose the filters? 
- Hand design them (digital signal processing, c.f. wavelets) 
- Learn them (deep learning)

How do we choose all the hyperparameters?
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Some hand-created image features

32

SIFT Spin Image

RIFTHoG

Texton GLOH

Slide from Honglak Lee
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Mini case study 1/3

33

Inspired by Coates and Ng (2012)

Input is CIFAR-10 dataset: 50000 examples of 32x32x3 images

1. Construct set of patches by random selection from images 
2. Standardize patch set (de-mean, norm 1, whiten, etc.) 
3. Run k-means on random patches 
4. Convolve each image with all patches (plus an offset) 
5. Push through ReLu 
6. Solve least squares for multiclass classification 
7. Classify with argmax

Inspired by Coates and Ng (2012)
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Mini case study 2/3

34

Inspired by Coates and Ng (2012)

Methods of standardization:
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Mini case study 3/3

35

Inspired by Coates and Ng (2012)

Dealing with class imbalance:
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Convolution Layer

36
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Could be very complicated…

37

Learn the convolutional filters using back propagation. 

Once learned, you can fix and apply the learned features to 
other datasets, and only learn the last fully connected layers.



©Kevin Jamieson

Could be very complicated…

38

Different architectures have different effects (not well understood)
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Example from Krizhevsky, Sutskever, Hinton 2012

39
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Using neural nets to learn  
non-linear features

41
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Sequences and Recurrent Neural 
Networks

Machine Learning – CSE4546 
Kevin Jamieson 
University of Washington 

November 28, 2017
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Variable length sequences

43

Images are usually standardized to be the same size (e.g., 256x256x3)

But what if we wanted to do classification on country-of-origin for names?

Hinton
Scottish 
English 
Irish 

Neural Network

Recurrent Neural Network
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Variable length sequences

44

Recurrent Neural Network

Standard RNN

LSTM

Slide: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Basic Text/Document Processing

Machine Learning – CSE4546 
Kevin Jamieson 
University of Washington 

November 28, 2017
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TF*IDF

46

n documents/articles with lots of text 

How to get a feature representation of each article? 

1. For each document d compute the proportion of times 
word t occurs out of all words in d, i.e. term frequency 

2. For each word t in your corpus, compute the proportion of 
documents out of n that the word t occurs, i.e., document frequency

3. Compute score for word t in document d as

TFd,t

DFt

TFd,t log(
1

DFt
)



http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Two Hearted Ale - Input ~2500 natural language reviews

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood
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Two Hearted Ale - Weighted Bag of Words: 



Weighted count vector

for the ith beer:

zi 2 R400,000

Cosine distance:

d(zi, zj) = 1� zT
i zj

||zi|| ||zj ||

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Two Hearted Ale - Nearest Neighbors: 
Bear Republic Racer 5 
Avery IPA 
Stone India Pale Ale &#40;IPA&#41; 
Founders Centennial IPA 
Smuttynose IPA  
Anderson Valley Hop Ottin IPA 
AleSmith IPA 
BridgePort IPA 
Boulder Beer Mojo IPA 
Goose Island India Pale Ale 
Great Divide Titan IPA 
New Holland Mad Hatter Ale 
Lagunitas India Pale Ale 
Heavy Seas Loose Cannon Hop3 
Sweetwater IPA

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood



Find an embedding {x1, . . . , xn} ⇢ Rd such that

||xk � xi|| < ||xk � xj || whenever d(zk, zi) < d(zk, zj)

for all 100-nearest neighbors.

(10

7
constraints, 10

5
variables)

Solve with hinge loss and stochastic gradient descent.

Could have also used local-linear-embedding,

max-volume-unfolding, kernel-PCA, etc.

(20 minutes on my laptop) (d=2,err=6%) (d=3,err=4%)

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF
Embedding in 
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling

distance in 400,000

dimensional “word space”
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Sanity check: styles 
should cluster together 
and similar styles 
should be close. 

IPA

Pale ale
Brown ale
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Belgian dark
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Other document modeling

54

1. Construct word x document matrix of counts 

2. Compute non-negative matrix factorization 

3. Use factorization to represent documents 
  

4. Cluster documents into topics

Matrix factorization:

Also see latent Dirichlet factorization (LDA)


