Announcements

- Posters CSE Atrium Thursday 10-12:30 (w/ coffee, bagels)
- Turn in digital copy of poster (in PDF) on canvas (one for each student)
- Prepare 1 minute speech for poster (we walk at 2 min)
- Problem you are solving
- Data you used
- ML methodology and metrics used for evaluation
- Results
- We provide poster board and pins
- Both one large poster (recommended) and several pinned pages are OK
- If you didn't see us, you didn't get a grade.

Active Learning, classification

Machine Learning - CSE4546 Kevin Jamieson University of Washington

December 5, 2017

Impressive recent advances in image recognition and translation...

Impressive recent advances in image recognition and translation...

Challenges for large models:

1) An enormous amount of labeled data is necessary for training

Number available labels
Time

Impressive recent advances in image recognition and translation...

Time

Challenges for large models:

1) An enormous amount of labeled data is necessary for training
2) An enormous amount of wall-clock time is necessary for training

Example: Image recognition

Example: Image recognition

Example: Image recognition

Nonadaptive label assignment

Example: Image recognition

airplane
automobile
bird

Nonadaptive label assignment

Example: Image recognition

Nonadaptive label assignment

Adaptive label assignment

Example: Image recognition

airplane
automobile
bird

Nonadaptive label assignment

Adaptive label assignment

complexity (reliability/robustness, scalability/computation, etc)

complexity (reliability/robustness, scalability/computation, etc)

Being convinced that data-collection should be adaptive is not the same thing as knowing how to be adaptive.

THE NEW YORKER CARTOON CAPTION CONTEST

Caption Contest \#553

 January 20, 2017

Third "Maybe his second week will go better"
Second "I'd like to see other people"
First "The corrupt media will blow this way out of proportion"

THE NEW YORKER CARTOON CAPTION CONTEST

- $n \approx 5000$ captions submitted each week
- crowdsource contest to volunteers who rate captions
- goal: identify funniest caption

```
& C (D) www.newyorker.com/cartoons/vote
```

\& C (D) www.newyorker.com/cartoons/vote
Q \&
Q \&

* C
* C
\square
\square
|

```
|
```

THE NEW YORKER

"It's amazing to think he started out in the lobby."

```
& C (1) www.newyorker.com/cartoons/vote
```

\& C (1) www.newyorker.com/cartoons/vote
Q s
Q s
4- (2
4- (2
\square
\square
\&0

```
&0
```

THE NEW YORKER

"I thought all our plants moved to Mexico."

```
& C (1) www.newyorker.com/cartoons/vote
```

\& C (1) www.newyorker.com/cartoons/vote

```
& C (1) www.newyorker.com/cartoons/vote
Q&
Q&
Q&
*)
```

*)

```
*)
```

THE NEW YORKER

"Be patient. He'll grow on you."

Which caption do we show next?

1) Non-adaptive uniform distribution over captions (A/B testing)
2) Adaptive: stop showing captions that will not win

4-5 times fewer ratings needed

Which caption do we show next?

1) Non-adaptive uniform distribution over captions (A/B testing)
2) Adaptive: stop showing captions that will not win

Best-action identification problem

\square muwomen

While algorithm does not exit:

- algorithm shows caption $i \in\{1, \ldots, n\}$
- Observé'iid Bernoulli with \mathbb{P} ("funny") $=\mu_{i}$

Sampling rule

Objective: with probability .99, identify $\arg \max _{i=1, \ldots, n} \mu_{i}$ using as few total samples as possible

Best-arm Identification $\mathrm{n}=2$

Consider $n=2$ and flip coins $i=1,2$ to get $X_{i, 1}, X_{i, 2}, \ldots, X_{i, m}$

$$
\begin{aligned}
& \widehat{\mu}_{i, m}=\frac{1}{m} \sum_{j=1}^{m} X_{i, j} \\
& \text { Test: } \widehat{\mu}_{1, m}-\widehat{\mu}_{2, m} \geq 0
\end{aligned}
$$

By a Chernoff Bound, if $\Delta=\mu_{1}-\mu_{2}$ then

$$
m=2 \log (1 / \delta) \Delta^{-2} \Longrightarrow \frac{\widehat{\mu}_{1, m}>\widehat{\mu}_{2, m}+2 \sqrt{\frac{\log (1 / \delta)}{2 m}} \Longrightarrow \mu_{1}>\mu_{2}}{\begin{array}{c}
\text { Arm 1 lower } \\
\text { confidence bound }
\end{array}>\begin{array}{c}
\text { Arm 2 upper } \\
\text { confidence bound }
\end{array}}
$$

\# votes Non-adaptive: $\quad n \max _{i=1, \ldots, n} \Delta_{i}^{-2} \log (n)$
Successive Elimination [Even-dar....06]:
Stop sampling caption ias soon as no overlap $\sum_{i=1}^{n} \Delta_{i}^{-2} \log (n)$

But this treated all captions the same, ignoring the text of the caption! Last lecture we talked about extracting features from documents and text to represent them as vectors (e.g., tf*idf or word2vec)
feature
extraction
"The corrupt media will blow this way out of proportion"

Using features, instead of finding the crowd's favorite caption, let's find your favorite caption!

Better yet, instead of captions, what about beer?
"Find my beer" problem

Bartender: "Try these samples. Was it closer to A or B?"

Me: "A"

Bartender: "Ok, try these, C or D?"

Me: "D"

Me: "You found it!"

Beer has some "simple" description and he was adaptively choosing questions to explore this space, much like $\mathbf{2 0}$ questions.

Optimization

Consider n beers, each described by a d-dimensional feature vector: $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$.
Goal: Learn someone's preferences over the n objects under the ideal point model:
$\forall(i, j)$, object i is preferred to $j \Longleftrightarrow\left\|w-x_{i}\right\|_{2}<\left\|w-x_{j}\right\|_{2}$ for some $w \in \mathbb{R}^{d}$

Ranking According to Distance

$$
\mathrm{C}<\mathrm{A}<\mathrm{B}<\mathrm{E}<\mathrm{G}<\mathrm{D}<\mathrm{F}
$$

W

Ranking According to Distance

Ranking According to Distance

D $<\mathrm{G}<\mathrm{C}<\mathrm{E}<\mathrm{A}<\mathrm{B}<\mathrm{F}$
O
W

Optimization

Consider n beers, each described by a d-dimensional feature vector: $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$.
Goal: Learn someone's preferences over the n objects under the ideal point model:
$\forall(i, j)$, object i is preferred to $j \Longleftrightarrow\left\|w-x_{i}\right\|_{2}<\left\|w-x_{j}\right\|_{2}$ for some $w \in \mathbb{R}^{d}$
binary information we can gather: $q_{i, j} \equiv$ do you prefer x_{i} or x_{j}

> CAL algorithm principle introduced in: D Cohn, LAtlas, and R Ladner, "Improving generalization with active learning," Machine learning 15 (2), pp. 201-221, 1994.

Lazy Binary Search

input: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$
initialize: x_{1}, \ldots, x_{n} in uniformly random order
for $\mathrm{k}=2, \ldots, \mathrm{n}$
simple linear program
for $\mathrm{i}=1, \ldots, \mathrm{k}-1$
if $q_{i, k}$ is ambiguous given $\left\{q_{i, j}\right\}_{i, j<k}$,
then ask for pairwise comparison,
else impute $q_{i, j}$ from $\left\{q_{i, j}\right\}_{i, j<k}$
output: ranking of x_{1}, \ldots, x_{n} consistent with all pairwise comparisons

Ranking and Geometry

suppose we have ranked 4 beers
ranking implies that the optimal preference point is in shaded region

Ranking and Geometry

suppose we have ranked 4 beers

Key Observation: most queries will not be ambiguous, therefore the expected total number of queries made by lazy binary search is about $d \log n$

Ranking and Geometry

at k-th step of algorithm

$$
\begin{aligned}
& \# \text { of } d \text {-cells } \approx \frac{k^{2 d}}{d!} \\
& \begin{aligned}
& \# \text { intersected } \approx \frac{k^{2(d-1)}}{(d-1)!}(\text { Coombs 1960) } \\
& \Longrightarrow \mathbb{P}(\text { ambiguous }) \approx \frac{d}{k^{2}}(\text { Cover 1965) } \\
& \Longrightarrow \mathbb{E}[\# \text { ambiguous }] \approx \frac{d}{k} \\
& \Longrightarrow \mathbb{E}[\# \text { requested }] \approx \sum_{k=2}^{n} \frac{d}{k} \\
& \approx d \log n
\end{aligned} \\
& \begin{array}{l}
\text { Commercial application: } \\
\begin{array}{l}
\text { Amazon visual search: } \\
\text { https://shopbylook.amazon.com/ Nowak 2011) }
\end{array}
\end{array}
\end{aligned}
$$

Classification with adaptively collected dataset

"Find the best" Judgments from a crowd (and adaptive A/B testing)

Pure Exploration

"Find the best" with features

Reinforcement Learning \& Markov Decision Processes (MDPs)

Machine Learning - CSE546 Kevin Jamieson
University of Washington
December 5, 2017

Learning to act

- Reinforcement learning
- An agent
\square Makes sensor observations
\square Must select action
\square Receives rewards
- positive for "good" states
- negative for "bad" states

[Ng et al. '05]

Markov Decision Process (MDP) Representation

- State space:
- Joint state \mathbf{x} of entire system
- Action space:
- Joint action $\mathbf{a}=\left\{a_{1}, \ldots, a_{n}\right\}$ for all agents
- Reward function:
- Total reward $R(\mathbf{x}, \mathbf{a})$
- sometimes reward can depend on action

- Transition model:
- Dynamics of the entire system $\mathrm{P}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$

Discount Factors

People in economics and probabilistic decision-making do this all the time.
The "Discounted sum of future rewards" using discount factor $\gamma^{\prime \prime}$ is
(reward now) +
γ (reward in 1 time step) +
γ^{2} (reward in 2 time steps) +
γ^{3} (reward in 3 time steps) +
(infinite sum)

Policy

$$
\text { Policy: } \pi(\mathbf{x})=\mathbf{a}
$$

At state \mathbf{x}, action a for all agents

Value of Policy

Value: $\mathrm{V}_{\pi}(\mathbf{x})$

Expected longterm reward starting from \mathbf{x}

Start from \mathbf{x}_{0} x_{0}
$\mathrm{R}\left(\mathrm{x}_{0}\right)$

Computing the value of a policy

$$
\begin{gathered}
V_{\pi}\left(\mathbf{x}_{0}\right)=E_{\pi}\left[R\left(\mathbf{x}_{0}\right)+\gamma R\left(\mathbf{x}_{1}\right)+\gamma^{2} R\left(\mathbf{x}_{2}\right)+\right. \\
\left.\gamma^{3} R\left(\mathbf{x}_{3}\right)+\gamma^{4} R\left(\mathbf{x}_{4}\right)+\ldots\right]
\end{gathered}
$$

- Discounted value of a state:
\square value of starting from x_{0} and continuing with policy π from then on

$$
\begin{aligned}
V_{\pi}\left(x_{0}\right) & =E_{\pi}\left[R\left(x_{0}\right)+\gamma R\left(x_{1}\right)+\gamma^{2} R\left(x_{2}\right)+\gamma^{3} R\left(x_{3}\right)+\cdots\right] \\
& =E_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(x_{t}\right)\right]
\end{aligned}
$$

- A recursion!

Simple approach for computing the value of a policy: Iteratively

$$
V_{\pi}(x)=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}\left(x^{\prime}\right)
$$

- Can solve using a simple convergent iterative approach: (a.k.a. dynamic programming)
- Start with some guess V^{0}
- Iteratively say:
- $V_{\pi}^{t+1}(x) \leftarrow R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}^{t}\left(x^{\prime}\right)$
\square Stop when $\left\|\mathrm{V}_{\mathrm{t}+1}-\mathrm{V}_{\mathrm{t}}\right\|_{\infty}<\varepsilon$
- means that $\left\|V_{\pi}-V_{t+1}\right\|_{\infty}<\varepsilon /(1-\gamma)$

But we want to learn a Policy

- So far, told you how good a policy is...

Policy: $\pi(\mathbf{x})=\mathbf{a}$

- But how can we choose the best policy???
- Suppose there was only one time step:
\square world is about to end!!!
\square select action that maximizes reward!

$\pi\left(\mathbf{x}_{1}\right)=$ one peasant builds
barrack, other gets gold
$\pi\left(\mathbf{x}_{2}\right)=$ peasants get gold, footmen attack

Unrolling the recursion

- Choose actions that lead to best value in the long run
- Optimal value policy achieves optimal value V^{*}

$$
V^{*}\left(x_{0}\right)=\max _{a_{0}} R\left(x_{0}, a_{0}\right)+\gamma E_{a_{0}}\left[\max _{a_{1}} R\left(x_{1}\right)+\gamma^{2} E_{a_{1}}\left[\max _{a_{2}} R\left(x_{2}\right)+\cdots\right]\right]
$$

Bellman equation

- Evaluating policy π :

$$
V_{\pi}(x)=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}\left(x^{\prime}\right)
$$

- Computing the optimal value V^{*} - Bellman equation

$$
V^{*}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

Optimal Long-term Plan

Optimal value function $\mathrm{V}^{*}(\mathbf{x})$

$$
\pi^{*}(\mathbf{x})=\underset{a}{\arg \max } R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

Interesting fact - Unique value

$$
V^{*}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

- Slightly surprising fact: There is only one V^{*} that solves Bellman equation!
\square there may be many optimal policies that achieve V^{*}
- Surprising fact: optimal policies are good everywhere!!!

$$
V_{\pi^{*}}(x) \geq V_{\pi}(x), \quad \forall x, \quad \forall \pi
$$

Solving an MDP

Solve Bellman equation

Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman ‘57]
- Value iteration [Bellman '57]
- Linear programming [Manne '60]
- ...

Value iteration (a.k.a. dynamic programming) -

 simplest of all$$
V^{*}(x)=R(x, a)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V^{*}\left(x^{\prime}\right)
$$

- Start with some guess V^{0}
- Iteratively say:

$$
\cdot V^{t+1}(x) \leftarrow \max _{a} R(x, a)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a\right) V^{t}\left(x^{\prime}\right)
$$

- Stop when $\left\|\mathrm{V}_{\mathrm{t}+1}-\mathrm{V}_{\mathrm{t}}\right\|_{\infty}<\varepsilon$

A simple example

Let's compute $\mathrm{V}_{\mathrm{t}}(\mathrm{x})$ for our example

$V^{t+1}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{t}\left(\mathbf{x}^{\prime}\right)$

What you need to know

- What's a Markov decision process
\square state, actions, transitions, rewards
\square a policy
\square value function for a policy
- computing V_{π}
- Optimal value function and optimal policy
\square Bellman equation
- Solving Bellman equation
with value iteration, policy iteration and linear programming

Recap

- Learning is function approximation
- Point estimation
- Linear Least Squares Regression
- Regularization, Ridge, LASSO
- Model assessment, Bias-Variance tradeoff
- Cross validation, Bootstrap
- (Non-)Convex optimization
- Stochastic gradient descent, coordinate descent
- Online learning (streaming), Perceptron
- Logistic regression
- Support vector machine (SVM)
- Kernel trick
- Intro to learning theory
- Supervised v. Unsupervised learning
- K-means
- Expectation-maximization (EM)
- Mixtures of Gaussians
- Dimensionality reduction, PCA, matrix factorization
- Matrix completion
- Neural networks, deep learning
- Recurrent neural networks for variable length sequences
- Text and document processing
- A/B testing, multi-armed bandits, active learning
- MDPs, Reinforcement learning

> Please don't forget to fill out class evaluation on myUW.

If not registered, or want to give content related feedback, or you want just me to know something (anonymously), google form: https://tinyurl.com/y87hck25

- HANDS ON EXPERIENCE.....

