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Accouncements

You should turn in a PDF and a python file(s) 

Figure for problem 9 should be in the PDF 

Please do not zip these files and submit (unless there are >5 files) 
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MLE Recap - coin flips

■ Data: sequence D= (HHTHT…), k heads out of n flips
■ Hypothesis: P(Heads) = θ,  P(Tails) = 1-θ 
 

■ Maximum likelihood estimation (MLE): Choose θ that 
maximizes the probability of observed data:

P (D|✓) = ✓k(1� ✓)n�k

b✓MLE = argmax

✓
P (D|✓)

= argmax

✓
logP (D|✓)

b✓MLE =
k

n
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MLE Recap - Gaussians

■ MLE: 

■ MLE for the variance of a Gaussian is biased 

Unbiased variance estimator:

bµMLE =
1

n

nX

i=1

xi
c
�

2
MLE =

1

n

nX

i=1

(xi � bµMLE)
2

E[c�2
MLE ] 6= �2

c
�

2
unbiased =

1

n� 1

nX

i=1

(xi � bµMLE)
2

logP (D|µ,�) = �n log(�

p
2⇡)�

nX

i=1

(xi � µ)

2

2�

2



MLE Recap

■ Learning is… 
Collect some data 
■ E.g., coin flips 

Choose a hypothesis class or model 
■ E.g., binomial 

Choose a loss function 
■ E.g., data likelihood 

Choose an optimization procedure 
■ E.g., set derivative to zero to obtain MLE 

Justifying the accuracy of the estimate 
■ E.g., Hoeffding’s inequality
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What about prior 

■ Billionaire: Wait, I know that the coin is “close” to 
50-50. What can you do for me now? 

■ You say: I can learn it the Bayesian way…
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Bayesian vs Frequentist

■   
■ Frequentists treat unknown θ as fixed and the  

data D as random. 

■ Bayesian treat the data D as fixed and the 
unknown θ as random

Data: D Estimator:

b✓ = t(D) loss: `(t(D), ✓)
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Bayesian Learning

■ Use Bayes rule: 

■ Or equivalently:
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Bayesian Learning for Coins

■ Likelihood function is simply Binomial: 

■ What about prior? 
Represent expert knowledge 

■ Conjugate priors: 
Closed-form representation of posterior 
For Binomial, conjugate prior is Beta distribution
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Beta prior distribution – P(θ)

■ Likelihood function: 
■ Posterior:

Mean: 

Mode: 

Beta(2,3) Beta(20,30)
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Posterior distribution

■ Prior: 
■ Data: αH heads and αT tails 

■ Posterior distribution: 

Beta(2,3) Beta(20,30)
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Using Bayesian posterior

■ Posterior distribution:  

■ Bayesian inference: 
No longer single parameter: 

Integral is often hard to compute



13©2017 Kevin Jamieson

MAP: Maximum a posteriori 
approximation

■ As more data is observed, Beta is more certain 

■ MAP: use most likely parameter:
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MAP for Beta distribution

■ MAP: use most likely parameter:
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MAP for Beta distribution

■ MAP: use most likely parameter: 

■ Beta prior equivalent to extra coin flips 
■ As N → 1, prior is “forgotten” 
■ But, for small sample size, prior is important!

�H + ↵H � 1

�H + �T + ↵H + ↵T � 2



Recap for Bayesian learning

■ Learning is… 
Collect some data 
■ E.g., coin flips 

Choose a hypothesis class or model 
■ E.g., binomial and prior based on expert knowledge 

Choose a loss function 
■ E.g., parameter posterior likelihood 

Choose an optimization procedure 
■ E.g., set derivative to zero to obtain MAP 

Justifying the accuracy of the estimate 
■ E.g., If the model is correct, you are doing best possible 
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Recap for Bayesian learning
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Bayesians are optimists:  
• “If we model it correctly, we output most likely answer”  
• Assumes one can accurately model: 

• Observations and link to unknown parameter θ: 

• Distribution, structure of unknown θ: 

Frequentist are pessimists: 
• “All models are wrong, prove to me your estimate is good” 
• Makes very few assumptions, e.g.                       and constructs an 

estimator (e.g., median of means of disjoint subsets of data) 
• Prove guarantee                        under hypothetical true θ’s 

p(x|✓)
p(✓)

E[X2] < 1

E[(✓ � b✓)2]  ✏
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The regression problem
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# square feet

S
al

e 
P

ric
e

Given past sales data on zillow.com, predict: 
     y = House sale price from  
     x = {# sq. ft., zip code, date of sale, etc.} 

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
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The regression problem
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# square feet

S
al

e 
P

ric
e

Given past sales data on zillow.com, predict: 
     y = House sale price from  
     x = {# sq. ft., zip code, date of sale, etc.} 

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ x

T
i w

min
w

nX

i=1

�
yi � x

T
i w

�2

best linear fit
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The regression problem in matrix notation

y =

2

64
y1
...
yn

3

75 X =

2

64
x

T
1
...
x

T
n

3

75

= argmin
w

(y �Xw)T (y �Xw)

bwLS = argmin
w

nX

i=1

�
yi � x

T
i w

�2
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The regression problem in matrix notation

= argmin
w

(y �Xw)T (y �Xw)

bwLS = argmin
w

||y �Xw||22
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The regression problem in matrix notation

= (XTX)�1XTy

bwLS = argmin
w

||y �Xw||22

What about an offset?

bwLS ,
b
bLS = argmin

w,b

nX

i=1

�
yi � (xT

i w + b)
�2

= argmin
w,b

||y � (Xw + 1b)||22
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Dealing with an offset

bwLS ,bbLS = argmin
w,b

||y � (Xw + 1b)||22
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Dealing with an offset

If XT1 = 0 (i.e., if each feature is mean-zero) then

bwLS = (XTX)�1XTY

bbLS =
1

n

nX

i=1

yi

XTX bwLS +bbLSX
T1 = XTy

1TX bwLS +bbLS1
T1 = 1Ty

bwLS ,bbLS = argmin
w,b

||y � (Xw + 1b)||22
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The regression problem in matrix notation

= (XTX)�1XTy

bwLS = argmin
w

||y �Xw||22

But why least squares?

Consider yi = x

T
i w + ✏i where ✏i

i.i.d.⇠ N (0,�

2
)

P (y|x,w,�) =



27

Maximizing log-likelihood

Maximize:
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logP (D|w,�) = log(

1p
2⇡�

)

n
nY

i=1

e�
(y

i

�x

T

i

w)2

2�2
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MLE is LS under linear model
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bwLS = argmin
w

nX

i=1

�
yi � x

T
i w

�2

if yi = x

T
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = argmax

w
P (D|w,�)

bwLS = bwMLE = (XTX)�1XTY
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The regression problem
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# square feet

S
al

e 
P

ric
e

Given past sales data on zillow.com, predict: 
     y = House sale price from  
     x = {# sq. ft., zip code, date of sale, etc.} 

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ x

T
i w

min
w

nX

i=1

�
yi � x

T
i w

�2

best linear fit



30

The regression problem
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date of sale

S
al

e 
P

ric
e

Given past sales data on zillow.com, predict: 
     y = House sale price from  
     x = {# sq. ft., zip code, date of sale, etc.} 

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ x

T
i w

min
w

nX

i=1

�
yi � x

T
i w

�2

best linear fit
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ x

T
i w

min
w

nX

i=1

�
yi � x

T
i w

�2

Transformed data:
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ x

T
i w

min
w

nX

i=1

�
yi � x

T
i w

�2

Transformed data:

in d=1:

h : Rd ! Rp
maps original

features to a rich, possibly

high-dimensional space

hj(x) =
1

1 + exp(u

T
j x)

hj(x) = (uT
j x)

2

for d>1, generate {uj}pj=1 ⇢ Rd

hj(x) = cos(u

T
j x)

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775
=

2

6664

x

x

2

...
x

p

3

7775
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ x

T
i w

min
w

nX

i=1

�
yi � x

T
i w

�2

Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear

Loss: least squares

yi ⇡ h(xi)
T
w

w 2 Rp

min
w

nX

i=1

�
yi � h(xi)

T
w

�2
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear

Loss: least squares

yi ⇡ h(xi)
T
w

w 2 Rp

min
w

nX

i=1

�
yi � h(xi)

T
w

�2

date of sale

S
al

e 
P

ric
e

best linear fit
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear

Loss: least squares

yi ⇡ h(xi)
T
w

w 2 Rp

min
w

nX

i=1

�
yi � h(xi)

T
w

�2

date of sale

S
al

e 
P

ric
e

small p fit
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear

Loss: least squares

yi ⇡ h(xi)
T
w

w 2 Rp

min
w

nX

i=1

�
yi � h(xi)

T
w

�2

date of sale

S
al

e 
P

ric
e

large p fit

What’s going on here?


