Accouncements

HWO Due Thursday at 11:59 PM You should turn in a PDF and a python files)

Figure for problem 9 should be in the PDF
Please do not zip these files and submit (unless there are >5 files)
Fix $x \in[0,1]$, $\mathbb{N}\{A\}=1$ if A is true. O otherwise
U is random variable, uniformly distributed on $[0,1]$

1. $\mathbb{E}[\mathbb{1}\{U \leq x\}]=\int_{0}^{1} \mathbb{1}\{u \leq x\} \cdot 1 d u=\int_{0}^{x} 1 \cdot 1 d u=x$
2. $\mathbb{E}\left[\mathbb{1}\{U \leq x\}^{2}\right]=\int_{0}^{1} \mathbb{1}\{u \leq x\}^{2} \cdot 1 d u=\int_{0}^{x} 1 \cdot 1 d u=x$
3. $\mathbb{E}[U]=\int_{0}^{1} u \cdot 1 d u=\left.\frac{1}{2} u^{2}\right|_{0} ^{1}=\frac{1}{2}$
4. $\mathbb{E}\left[U^{p}\right]$ for $p>0=\int_{0}^{1} u^{p} \cdot 1 \quad d u=\left.\frac{u^{p+1}}{\rho+1}\right|_{0} ^{1}=\frac{1}{\rho+1}$

Bayesian Methods

Machine Learning - CSE546
Kevin Jamieson University of Washington

September 28, 2017

MLE Recap - coin flips

- Data: sequence $D=(H H T H T . .$.$) , \mathbf{k}$ heads out of \mathbf{n} flips
- Hypothesis: $P($ Heads $)=\theta, P($ Tails $)=1-\theta$

$$
P(\mathcal{D} \mid \theta)=\theta^{k}(1-\theta)^{n-k}
$$

- Maximum likelihood estimation (MLE): Choose θ that maximizes the probability of observed data:

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \quad \widehat{\theta}_{M L E}=\frac{k}{n} \\
& =\arg \max _{\theta} \log P(\mathcal{D} \mid \theta)
\end{aligned}
$$

MLE Recap - Gaussians

- MLE:

$$
\begin{aligned}
& \qquad \log P(\mathcal{D} \mid \mu, \sigma)=-n \log (\sigma \sqrt{2 \pi})-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} \\
& \widehat{\mu}_{M L E}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \widehat{\sigma^{2}} M L E=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{M L E}\right)^{2}
\end{aligned}
$$

- MLE for the variance of a Gaussian is biased

$$
\mathbb{E}\left[\widehat{\sigma^{2}} M L E\right] \neq \sigma^{2}
$$

\square Unbiased variance estimator:

$$
{\widehat{\sigma^{2}}}_{\text {unbiased }}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{M L E}\right)^{2}
$$

MLE Recap

- Learning is...
- Collect some data
- E.g., coin flips
- Choose a hypothesis class or model
- E.g., binomial

Choose a loss function

- E.g., data likelihood
\square Choose an optimization procedure
- E.g., set derivative to zero to obtain MLE
\square Justifying the accuracy of the estimate
- E.g., Hoeffding's inequality

What about prior

Billionaire: Wait, I know that the coin is "close" to 50-50. What can you do for me now?

- You say: I can learn it the Bayesian way...

Bayesian vs Frequentist

- Data: \mathcal{D} Estimator: $\widehat{\theta}=t(\mathcal{D})$ loss: $\ell(t(\mathcal{D}), \theta)$
- Frequentists treat unknown θ as fixed and the data D as random.

- Bayesian treat the data D as fixed and the unknown θ as random
$\underbrace{P(\theta)}_{0} \rightarrow \bigcap_{1 / 2} \rightarrow$ observe $D=\frac{75}{100} \frac{\mathrm{hads}}{\mathrm{flips}} \rightarrow$

Bayesian Learning

- Use Bayes rule:

$$
P(\theta \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}
$$

- Or equivalently:

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

Bayesian Learning for Coins

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

- Likelihood function is simply Binomial:

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

- What about prior?
- Represent expert knowledge
- Conjugate priors:
\square Closed-form representation of posterior
\square For Binomial, conjugate prior is Beta distribution

- Likelihood function:

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

- Posterior:

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

Posterior distribution

- Prior: $\operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)$
- Data: α_{H} heads and α_{T} tails
- Posterior distribution:
$P(\theta \mid \mathcal{D})=\operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)$

Using Bayesian posterior

- Posterior distribution:

$P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)$
- Bayesian inference:
- No longer single parameter:
$\theta_{1}, \theta_{2}, \ldots, \theta_{N} \sim P(\theta \mid D)$
$\mathbb{E}[f(\theta) \mid D]]_{E[f(\theta)]}=\int_{0}^{1} f(\theta) P(\theta \mid \mathcal{D}) d \theta$

$$
\approx \frac{1}{N} \sum_{i=1}^{N} f\left(\theta_{i}\right)
$$

\square Integral is often hard to compute

MAP: Maximum a posteriori approximation
 $$
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)
$$

$$
E[f(\theta)]=\int_{0}^{1} f(\theta) P(\theta \mid \mathcal{D}) d \theta
$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter:

$$
\begin{aligned}
\hat{\theta}_{\text {MAD }} & =\arg \max _{\theta} P(\theta \mid \mathcal{D}) \quad E[f(\theta)] \not \approx f(\widehat{\theta}) \\
& =\underset{\alpha}{\operatorname{argmax}} P(D \mid \theta) P(\theta) \\
\hat{\theta}_{\text {MLI }} & =\underset{\theta}{\operatorname{argmax}} P(D \mid \theta)
\end{aligned}
$$

MAP for Beta distribution

$$
P(\theta \mid \mathcal{D})=\frac{\theta^{\beta_{H}+\alpha_{H}-1}(1-\theta)^{\beta_{T}+\alpha_{T}-1}}{B\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)
$$

- MAP: use most likely parameter:

$$
\hat{\theta}_{\text {MAP }}=\arg \max _{\theta} P(\theta \mid \mathcal{D})=\frac{\alpha_{H}+\beta_{H}-1}{\alpha_{H}+\beta_{H}+\alpha_{T}+\beta_{T}-2}
$$

MAP for Beta distribution

$P(\theta \mid \mathcal{D})=\frac{\theta^{\beta_{H}+\alpha_{H}-1}(1-\theta)^{\beta_{T}+\alpha_{T}-1}}{B\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)$

- MAP: use most likely parameter:
$\hat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D})=\frac{\beta_{H}+\alpha_{H}-1}{\beta_{H}+\beta_{T}+\alpha_{H}+\alpha_{T}-2}$
- Beta prior equivalent to extra coin flips
- As $\mathbb{N} \rightarrow 1$, prior is "forgotten"
- But, for small sample size, prior is important!

Recap for Bayesian learning

- Learning is...
- Collect some data
- E.g., coin flips
- Choose a hypothesis class or model
- E.g., binomial and prior based on expert knowledge
- Choose a loss function
- E.g., parameter posterior likelihood
\square Choose an optimization procedure
- E.g., set derivative to zero to obtain MAP
\square Justifying the accuracy of the estimate
- E.g., If the model is correct, you are doing best possible

Recap for Bayesian learning

Bayesians are optimists:

- "If we model it correctly, we output most likely answer"
- Assumes one can accurately model:
- Observations and link to unknown parameter $\theta: p(x \mid \theta)$
- Distribution, structure of unknown $\theta: p(\theta)$

Frequentist are pessimists:

- "All models are wrong, prove to me your estimate is good"
- Makes very few assumptions, e.g. $\mathbb{E}\left[X^{2}\right]<\infty$ and constructs an estimator (e.g., median of means of disjoint subsets of data)
- Prove guarantee $\mathbb{E}\left[(\theta-\widehat{\theta})^{2}\right] \leq \epsilon$ under hypothetical true θ 's

Linear Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington Oct 3, 2017

The regression problem

Given past sales data on zillow.com, predict: $y=$ House sale price from
$x=\{\#$ sq. ft., zip code, date of sale, etc. $\}$

The regression problem

Given past sales data on zillow.com, predict:

$$
\begin{aligned}
& y=\text { House sale price from } \\
& x=\{\# \text { sq. ft., zip code, date of sale, etc. }\}
\end{aligned}
$$

Training Data:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}
$$

Hypothesis: linear

$$
y_{i} \approx x_{i}^{T} w=\sum_{j=1}^{d} x_{i i_{j}} w_{j}
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

The regression problem in matrix notation

$$
\begin{aligned}
& \widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \\
& =\arg \min _{w} \frac{(\mathbf{y}-\mathbf{X} w)^{T}}{\mid \times n} \frac{(\mathbf{y}-\mathbf{X} w)}{n \times 1}=\left\|y-x_{2}^{2}\right\|_{2} \\
& \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
\left.\mathbf{X}=\left[\begin{array}{c}
x_{1}^{T} \\
\vdots \\
x_{n}^{T}
\end{array}\right]=\left[\begin{array}{l}
\overline{\bar{Z}} \\
\bar{Z}
\end{array}\right] .\right] ~=~
\end{array}\right. \\
& \left(y-x_{\omega}\right)=\underset{y}{\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]} \underset{x}{\left[\begin{array}{c}
- \\
\vdots \\
\vdots \\
\frac{2}{\omega}
\end{array}\right]}
\end{aligned}
$$

The regression problem in matrix notation

$$
\begin{gathered}
\hat{w}_{L S}=\arg \min _{w}\|\mathbf{y}-\mathbf{X} w\|_{2}^{2} \\
=\arg \min _{w} \frac{(\mathbf{y}-\mathbf{X} w)^{T}(\mathbf{y}-\mathbf{X} w)}{=J(\omega)} \\
\nabla_{w} \bar{J}(w)=\nabla_{w}\left(y^{\top} y-y^{\top} x_{w}-\left(X_{w}\right)^{\top} y+w^{\top} x^{\top} x_{w}\right) \\
=0-x^{\top} y-x^{\top} y+2 x^{\top} x_{w} \\
=-2 x^{\top} y+2 x^{\top} x_{w}=0 \quad x^{\top} x_{\hat{w}_{L S}}=x^{\top} y \\
\hat{\omega}_{w s}=\left(X^{\top} x\right)^{-1} x^{\top} y
\end{gathered}
$$

The regression problem in matrix notation

$$
\begin{aligned}
\widehat{w}_{L S} & =\arg \min _{w}\|\mathbf{y}-\mathbf{X} w\|_{2}^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

What about an offset?

$$
\begin{aligned}
\widehat{w}_{L S}, \widehat{b}_{L S} & =\arg \min _{w, b} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+b\right)\right)^{2} \\
& =\arg \min _{w, b}\left\|\mathbf{y}-\left(\mathbf{X} w+\mathbf{N}_{n \times 1} b\right)\right\|_{2}^{2}
\end{aligned}
$$

Dealing with an offset

$$
\widehat{w}_{L S}, \widehat{b}_{L S}=\arg \min _{w, b}\|\mathbf{y}-(\mathbf{X} w+\mathbf{1} b)\|_{2}^{2}
$$

Dealing with an offset

$$
\begin{gathered}
\widehat{w}_{L S}, \widehat{b}_{L S}=\arg \min _{w, b}\|\mathbf{y}-(\mathbf{X} w+\mathbf{1} b)\|_{2}^{2} \\
\mathbf{X}^{T} \mathbf{X} \widehat{w}_{L S}+\widehat{b}_{L S} \mathbf{X}^{T} \mathbf{1}=\mathbf{X}^{T} \mathbf{y} \\
\mathbf{1}^{T} \mathbf{X} \widehat{w}_{L S}+\widehat{b}_{L S} \mathbf{1}^{T} \mathbf{1}=\mathbf{1}^{T} \mathbf{y}
\end{gathered}
$$

If $\mathbf{X}^{T} \mathbf{1}=0$ (i.e., if each feature is mean-zero) then

$$
\begin{aligned}
\widehat{w}_{L S} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
\widehat{b}_{L S} & =\frac{1}{n} \sum_{i=1}^{n} y_{i}
\end{aligned}
$$

The regression problem in matrix notation

$$
\begin{aligned}
\widehat{w}_{L S} & =\arg \min _{w}\|\mathbf{y}-\mathbf{X} w\|_{2}^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

But why least squares?
Consider $\quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ where $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$
$P(y \mid x, w, \sigma)=$

Maximizing log-likelihood

Maximize:
$\log P(\mathcal{D} \mid w, \sigma)=\log \left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \prod_{i=1}^{n} e^{-\frac{\left(y_{i}-x_{i}^{T} w\right)^{2}}{2 \sigma^{2}}}$

MLE is LS under linear model

$$
\begin{aligned}
& \widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \\
& \widehat{w}_{M L E}=\arg \max _{w} P(\mathcal{D} \mid w, \sigma) \\
& \quad \text { if } \quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad \text { and } \quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) \\
& \quad \widehat{w}_{L S}=\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

The regression problem

Given past sales data on zillow.com, predict:

$$
\begin{aligned}
& y=\text { House sale price from } \\
& x=\{\# \text { sq. ft., zip code, date of sale, etc. }\}
\end{aligned}
$$

Training Data:
$\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
$y_{i} \in \mathbb{R}$

Hypothesis: linear

$$
y_{i} \approx x_{i}^{T} w
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

The regression problem

Given past sales data on zillow.com, predict:

$$
\begin{aligned}
& y=\text { House sale price from } \\
& x=\{\# \text { sq. ft., zip code, date of sale, etc. }\}
\end{aligned}
$$

Training Data:
$\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
Hypothesis: linear

$$
y_{i} \approx x_{i}^{T} w
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

The regression problem

$\begin{array}{ll}\text { Training Data: } & x_{i} \in \mathbb{R}^{d} \\ \left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} & y_{i} \in \mathbb{R}\end{array}$
Hypothesis: linear

$$
y_{i} \approx x_{i}^{T} w
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

Transformed data:

The regression problem

Training Data:
 $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

Hypothesis: linear

$$
y_{i} \approx x_{i}^{T} w
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

Transformed data:

$h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ maps original features to a rich, possibly high-dimensional space
in d=1: $\quad h(x)=\left[\begin{array}{c}h_{1}(x) \\ h_{2}(x) \\ \vdots \\ h_{p}(x)\end{array}\right]=\left[\begin{array}{c}x \\ x^{2} \\ \vdots \\ x^{p}\end{array}\right]$ for $\mathrm{d}>1$, generate $\left\{u_{j}\right\}_{j=1}^{p} \subset \mathbb{R}^{d}$

$$
\begin{aligned}
h_{j}(x) & =\frac{1}{1+\exp \left(u_{j}^{T} x\right)} \\
h_{j}(x) & =\left(u_{j}^{T} x\right)^{2} \\
h_{j}(x) & =\cos \left(u_{j}^{T} x\right)
\end{aligned}
$$

The regression problem

$\begin{array}{ll}\text { Training Data: } & x_{i} \in \mathbb{R}^{d} \\ \left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} & y_{i} \in \mathbb{R}\end{array}$
Hypothesis: linear $y_{i} \approx x_{i}^{T} u$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{h}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

Transformed data:

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{p}(x)
\end{array}\right]
$$

Hypothesis: linear

$$
y_{i} \approx h\left(x_{i}\right)^{T} w \quad w \in \mathbb{R}^{p}
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-h\left(x_{i}\right)^{T} w\right)^{2}
$$

The regression problem

Training Data: $\quad x_{i} \in \mathbb{R}^{d}$ $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad y_{i} \in \mathbb{R}$

Transformed data:

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{p}(x)
\end{array}\right]
$$

Hypothesis: linear
$y_{i} \approx h\left(x_{i}\right)^{T} w \quad w \in \mathbb{R}^{p}$
Loss: least squares
$\min _{w} \sum_{i=1}^{n}\left(y_{i}-h\left(x_{i}\right)^{T} w\right)^{2}$

The regression problem

Training Data: $x_{i} \in \mathbb{R}^{d}$ $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} y_{i} \in \mathbb{R}$

small p fit

Transformed data:

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{p}(x)
\end{array}\right]
$$

Hypothesis: linear
$y_{i} \approx h\left(x_{i}\right)^{T} w \quad w \in \mathbb{R}^{p}$
Loss: least squares
$\min _{w} \sum_{i=1}^{n}\left(y_{i}-h\left(x_{i}\right)^{T} w\right)^{2}$

The regression problem

Training Data: $x_{i} \in \mathbb{R}^{d}$ $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} y_{i} \in \mathbb{R}$

large p fit

date of sale

Transformed data:

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{p}(x)
\end{array}\right]
$$

Hypothesis: linear
$y_{i} \approx h\left(x_{i}\right)^{T} w \quad w \in \mathbb{R}^{p}$
Loss: least squares
$\min _{w} \sum_{i=1}^{n}\left(y_{i}-h\left(x_{i}\right)^{T} w\right)^{2}$
What's going on here?

