Linear Regression

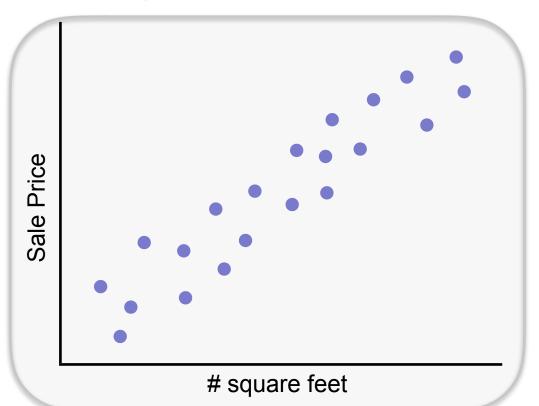
Machine Learning – CSE546 Kevin Jamieson University of Washington

Oct 5, 2017

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

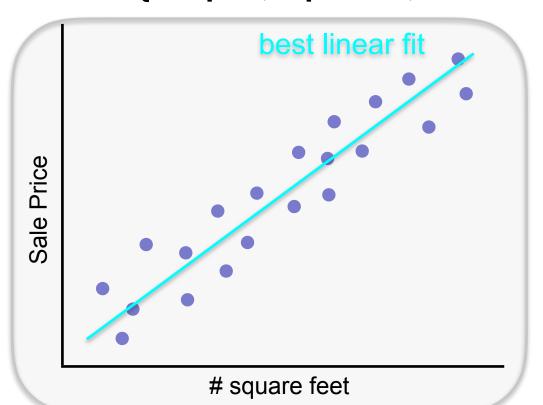


Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$



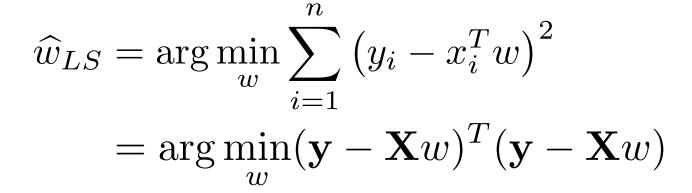
Training Data: $x_i \in \mathbb{R}^d$ $y_i \in \mathbb{R}$

$$\{(x_i, y_i)\}_{i=1}^n$$

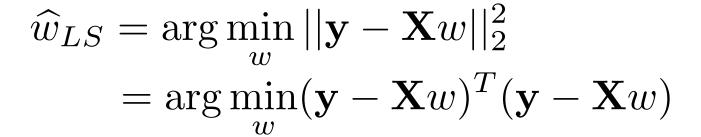
Hypothesis: linear

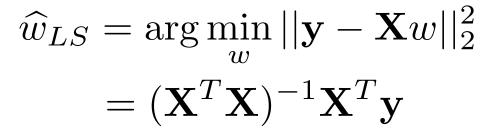
$$y_i \approx x_i^T w$$

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$



$$\mathbf{y} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix} \quad \mathbf{X} = egin{bmatrix} x_1^T \ dots \ x_n^T \end{bmatrix}$$

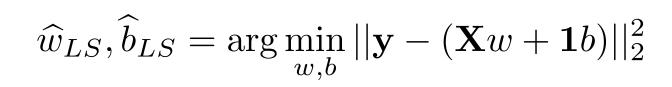




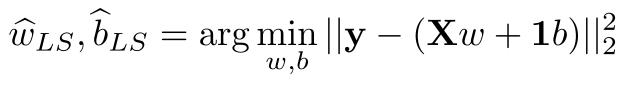
What about an offset?

$$\widehat{w}_{LS}, \widehat{b}_{LS} = \arg\min_{w,b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2$$
$$= \arg\min_{w,b} ||\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)||_2^2$$

Dealing with an offset



Dealing with an offset



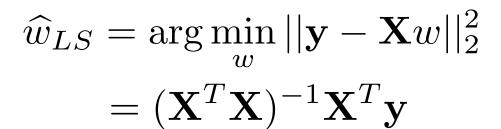
$$\mathbf{X}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{X}^T \mathbf{1} = \mathbf{X}^T \mathbf{y}$$

 $\mathbf{1}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{1}^T \mathbf{1} = \mathbf{1}^T \mathbf{y}$

If $\mathbf{X}^T \mathbf{1} = 0$ (i.e., if each feature is mean-zero) then

$$\widehat{w}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

$$\widehat{b}_{LS} = \frac{1}{n} \sum_{i=1}^{n} y_i$$



But why least squares?

Consider
$$y_i = x_i^T w + \epsilon_i$$
 where $\epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

$$P(y|x, w, \sigma) =$$

Maximizing log-likelihood

Maximize:

$$\log P(\mathcal{D}|w,\sigma) = \log(\frac{1}{\sqrt{2\pi}\sigma})^n \prod_{i=1}^n e^{-\frac{(y_i - x_i^T w)^2}{2\sigma^2}}$$

MLE is LS under linear model

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

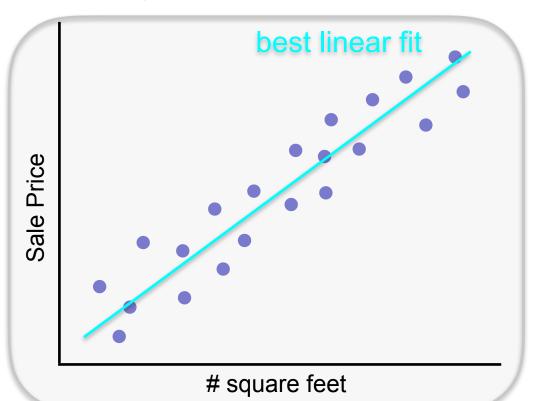
$$\widehat{w}_{MLE} = \arg \max_{w} P(\mathcal{D}|w, \sigma)$$
if $y_i = x_i^T w + \epsilon_i$ and $\epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

$$\widehat{w}_{LS} = \widehat{w}_{MLE} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$



Training Data: $x_i \in \mathbb{R}^d$ $y_i \in \mathbb{R}$

$$\{(x_i, y_i)\}_{i=1}^n$$

Hypothesis: linear

$$y_i \approx x_i^T w$$

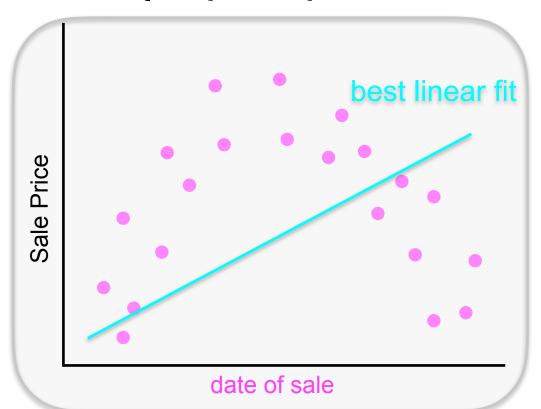
Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$



Training Data: $x_i \in \mathbb{R}^d$ $y_i \in \mathbb{R}$ $y_i \in \mathbb{R}$

Hypothesis: linear

$$y_i \approx x_i^T w$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Training Data:

$$\{(x_i, y_i)\}_{i=1}^n$$

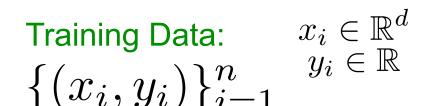
$$x_i \in \mathbb{R}^d$$
$$y_i \in \mathbb{R}$$

Transformed data:

Hypothesis: linear

$$y_i \approx x_i^T w$$

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$



Hypothesis: linear

$$y_i \approx x_i^T w$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Transformed data:

 $h: \mathbb{R}^d \to \mathbb{R}^p$ maps original features to a rich, possibly high-dimensional space

in d=1:
$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^p \end{bmatrix}$$

for d>1, generate
$$\{u_j\}_{j=1}^p\subset\mathbb{R}^d$$

$$h_j(x)=\frac{1}{1+\exp(u_j^Tx)}$$

$$h_j(x)=(u_j^Tx)^2$$

$$h_j(x)=\cos(u_j^Tx)$$

Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$

Hypothesis: linear

$$y_i \approx x_i^T w$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

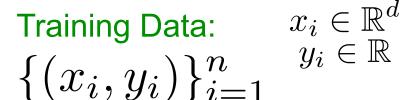
Transformed data:

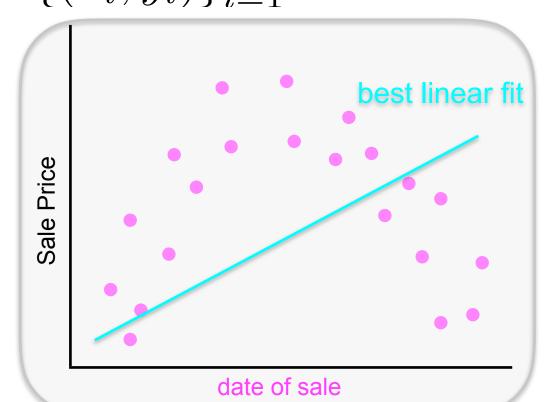
$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$





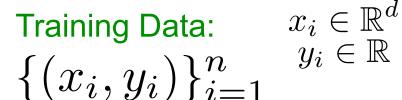
Transformed data:

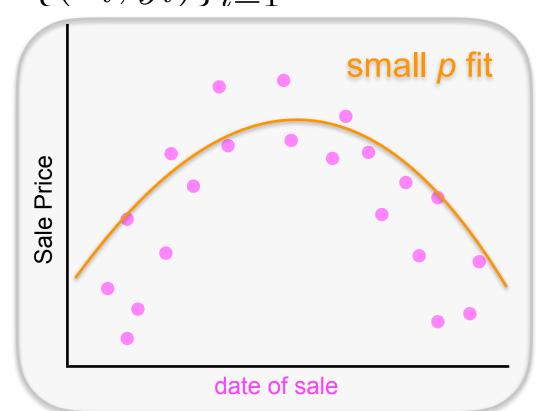
$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$





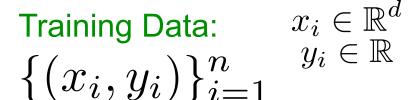
Transformed data: $h_1(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \end{bmatrix}$

$$h(x) = \begin{bmatrix} h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$





Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

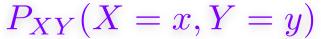
Loss: least squares

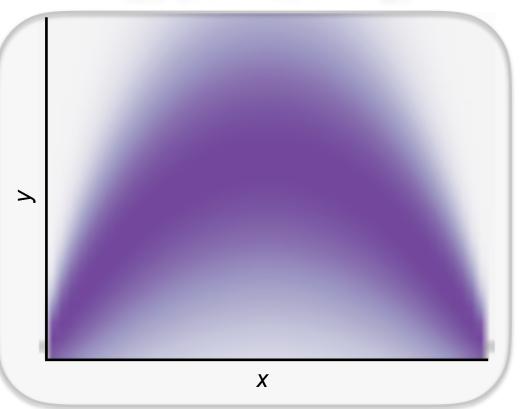
$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$

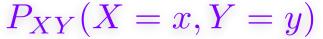
What's going on here?

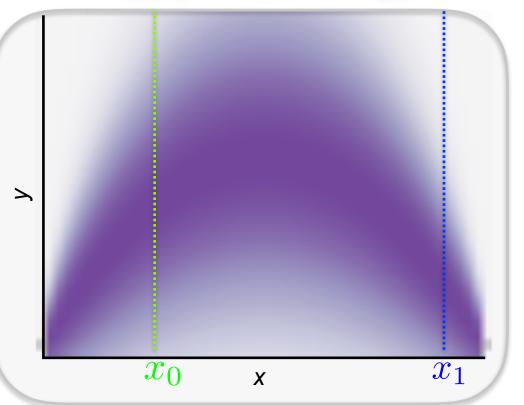
Machine Learning – CSE546 Kevin Jamieson University of Washington

Oct 5, 2017

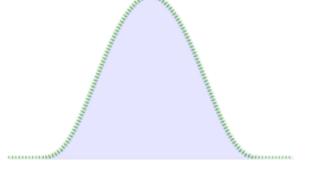




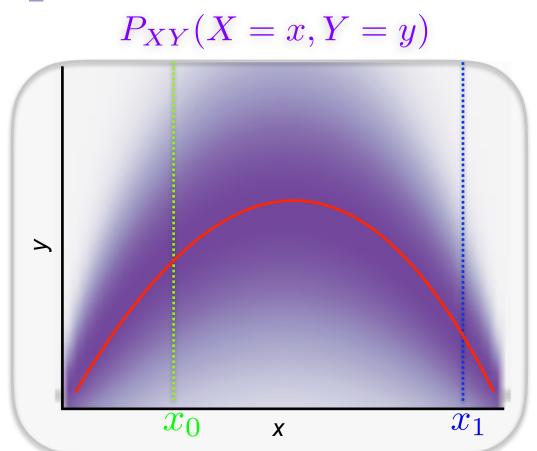




$$P_{XY}(Y=y|X=x_0)$$



$$P_{XY}(Y = y|X = x_1)$$

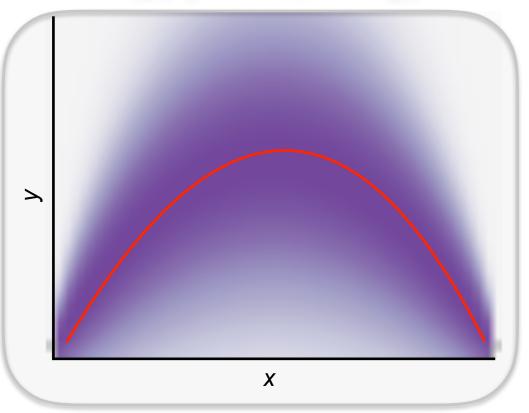


Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X = x]$$

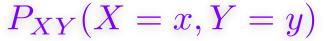
$$P_{XY}(Y=y|X=x_0)$$

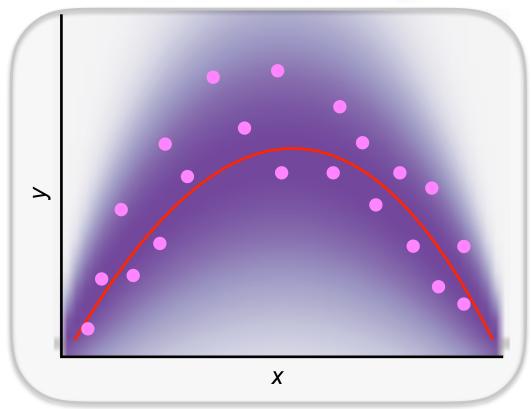
$$P_{XY}(Y=y|X=x_1)$$



Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X=x]$$

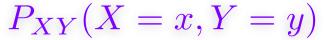


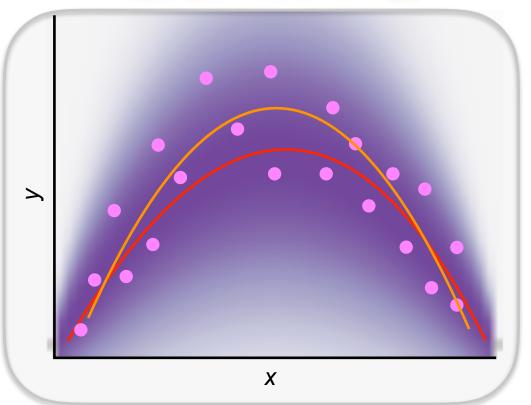


Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X=x]$$

But we only have samples: $(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$ for i = 1, ..., n





Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X = x]$$

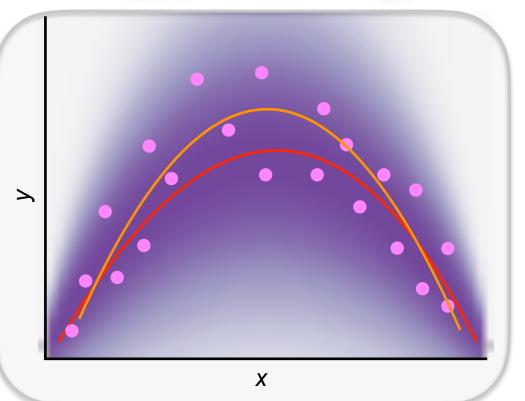
But we only have samples:

$$(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$$
 for $i = 1, \dots, n$

and are restricted to a function class (e.g., linear) so we compute:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$P_{XY}(X=x,Y=y)$$



Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X=x]$$

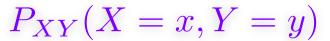
But we only have samples:

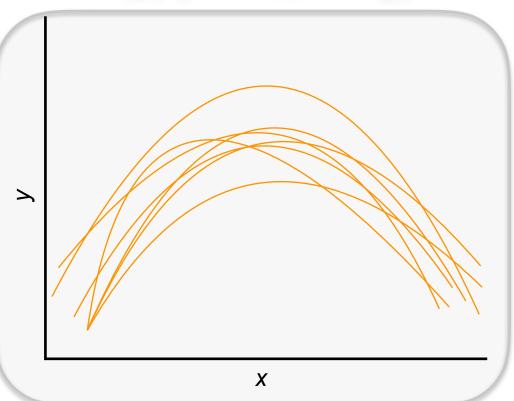
$$(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$$
 for $i = 1, \dots, n$

and are restricted to a function class (e.g., linear) so we compute:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

We care about future predictions: $\mathbb{E}_{XY}[(Y-\widehat{f}(X))^2]$





Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X=x]$$

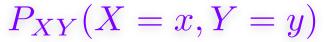
But we only have samples:

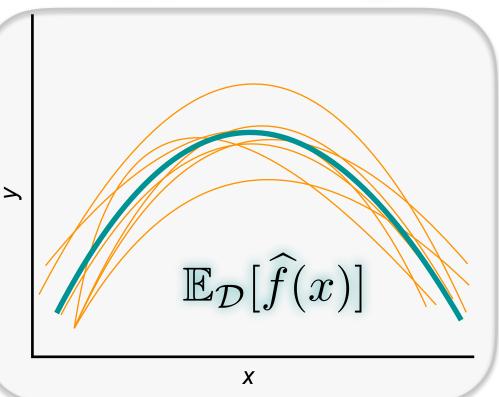
$$(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$$
 for $i = 1, \dots, n$

and are restricted to a function class (e.g., linear) so we compute:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Each draw $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ results in different \widehat{f}





Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{XY}[Y|X=x]$$

But we only have samples:

$$(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY} \quad \text{for } i = 1, \dots, n$$

and are restricted to a function class (e.g., linear) so we compute:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Each draw $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ results in different \widehat{f}

$$\eta(x) = \mathbb{E}_{XY}[Y|X=x]$$

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$\mathbb{E}_{Y|X=x}[\mathbb{E}_{\mathcal{D}}[(Y-\widehat{f}_{\mathcal{D}}(x))^2]] = \mathbb{E}_{Y|X=x}[\mathbb{E}_{\mathcal{D}}[(Y-\eta(x)+\eta(x)-\widehat{f}_{\mathcal{D}}(x))^2]]$$

$$\eta(x) = \mathbb{E}_{XY}[Y|X = x]$$

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$\mathbb{E}_{XY}[\mathbb{E}_{\mathcal{D}}[(Y - \widehat{f}_{\mathcal{D}}(x))^{2}] | X = x] = \mathbb{E}_{XY}[\mathbb{E}_{\mathcal{D}}[(Y - \eta(x) + \eta(x) - \widehat{f}_{\mathcal{D}}(x))^{2}] | X = x]$$

$$= \mathbb{E}_{XY}[\mathbb{E}_{\mathcal{D}}[(Y - \eta(x))^{2} + 2(Y - \eta(x))(\eta(x) - \widehat{f}_{\mathcal{D}}(x))$$

$$+ (\eta(x) - \widehat{f}_{\mathcal{D}}(x))^{2}] | X = x]$$

$$= \mathbb{E}_{XY}[(Y - \eta(x))^{2} | X = x] + \mathbb{E}_{\mathcal{D}}[(\eta(x) - \widehat{f}_{\mathcal{D}}(x))^{2}]$$

irreducible error

Caused by stochastic label noise

learning error

Caused by either using too "simple" of a model or not enough data to learn the model accurately

$$\eta(x) = \mathbb{E}_{XY}[Y|X=x]$$

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \widehat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x))^{2}]$$

$$\begin{split} \eta(x) &= \mathbb{E}_{XY}[Y|X=x] & \widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 \\ \mathbb{E}_{\mathcal{D}}[(\eta(x) - \widehat{f}_{\mathcal{D}}(x))^2] &= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x))^2] \\ &= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)])^2 + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x)) \\ &+ (\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x))^2] \\ &= \underbrace{(\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)])^2}_{\text{biased squared}} + \underbrace{\mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x))^2]}_{\text{variance}} \end{split}$$

$$\mathbb{E}_{XY}[\mathbb{E}_{\mathcal{D}}[(Y-\widehat{f}_{\mathcal{D}}(x))^2]\big|X=x] = \mathbb{E}_{XY}[(Y-\eta(x))^2\big|X=x]$$
 irreducible error
$$+(\eta(x)-\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)])^2 + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)]-\widehat{f}_{\mathcal{D}}(x))^2]$$
 biased squared variance

Model too simple → high bias, cannot fit well to data

Model too complex → high variance, small changes in data change learned function a lot

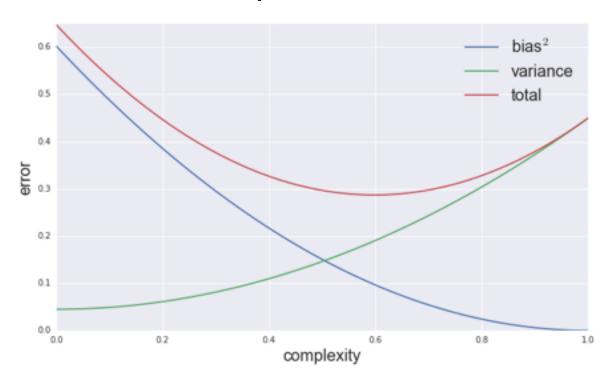
$$\mathbb{E}_{XY}\left[\mathbb{E}_{\mathcal{D}}\left[(Y-\widehat{f}_{\mathcal{D}}(x))^{2}\right]\middle|X=x\right] = \mathbb{E}_{XY}\left[(Y-\eta(x))^{2}\middle|X=x\right]$$

irreducible error

$$+(\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)])^2 + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x))^2]$$

biased squared

variance



Overfitting

Machine Learning – CSE546 Kevin Jamieson University of Washington

Oct 5, 2017

- Choice of hypothesis class introduces learning bias
 - □ More complex class → less bias
 - □ More complex class → more variance
- But in practice??

- Choice of hypothesis class introduces learning bias
 - □ More complex class → less bias
 - □ More complex class → more variance
- But in practice??
- Before we saw how increasing the feature space can increase the complexity of the learned estimator:

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots$$

$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Complexity grows as k grows

$$\overline{\mathcal{F}}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots \quad \mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg \min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

TRAIN error:

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRUE error:

$$\mathbb{E}_{XY}[(Y - \widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$$

$$\overline{\mathcal{F}}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots \quad \mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

TRAIN error:

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRUE error:

$$\mathbb{E}_{XY}[(Y-\widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$$

TEST error:

$$\mathcal{T} \overset{i.i.d.}{\sim} P_{XY}$$

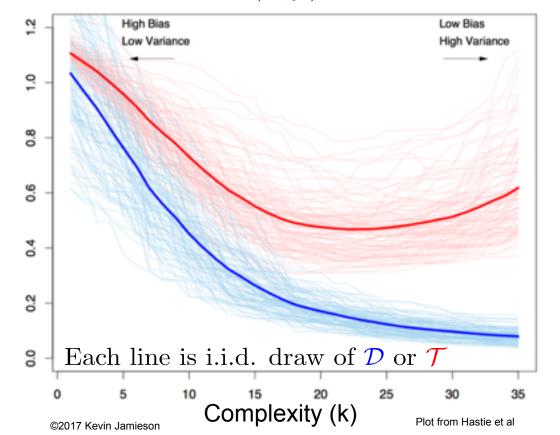
$$\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

Important:
$$\mathcal{D} \cap \mathcal{T} = \emptyset$$

Complexity (k)

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots \quad \mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$



TRAIN error:

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRUE error:

$$\mathbb{E}_{XY}[(Y-\widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$$

TEST error:

$$\mathcal{T} \overset{i.i.d.}{\sim} P_{XY}$$

$$\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

Important:
$$\mathcal{D} \cap \mathcal{T} = \emptyset$$

$$\overline{\mathcal{F}}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots \quad \mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg \min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

TRAIN error is **optimistically biased** because it is evaluated on the data it trained on. **TEST error** is **unbiased** only if *T* is never used to train the model or even pick the complexity k.

TRAIN error:

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRUE error:

$$\mathbb{E}_{XY}[(Y - \widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$$

TEST error:

$$\mathcal{T} \overset{i.i.d.}{\sim} P_{XY} \\
\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

Test set error

- Given a dataset, randomly split it into two parts:
 - Training data:
 - □ Test data: *T*

Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

- Use training data to learn predictor
 - e.g., $\frac{1}{|\mathcal{D}|} \sum_{(x_i,y_i)\in\mathcal{D}} (y_i \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$
 - use training data to pick complexity k (next lecture)
- Use test data to report predicted performance

$$\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

Overfitting

 Overfitting: a learning algorithm overfits the training data if it outputs a solution w when there exists another solution w' such that:

$$[error_{train}(\mathbf{w}) < error_{train}(\mathbf{w}')] \land [error_{true}(\mathbf{w}') < error_{true}(\mathbf{w})]$$

How many points do I use for training/testing?

- Very hard question to answer!
 - Too few training points, learned model is bad
 - Too few test points, you never know if you reached a good solution
- Bounds, such as Hoeffding's inequality can help:

$$P(||\widehat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$

- More on this later this quarter, but still hard to answer
- Typically:
 - If you have a reasonable amount of data 90/10 splits are common
 - If you have little data, then you need to get fancy (e.g., bootstrapping)

Recap

- Learning is...
 - Collect some data
 - E.g., housing info and sale price
 - Randomly split dataset into TRAIN and TEST
 - E.g., 80% and 20%, respectively
 - Choose a hypothesis class or model
 - E.g., linear
 - Choose a loss function
 - E.g., least squares
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain estimator
 - Justifying the accuracy of the estimate
 - E.g., report TEST error