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We’re trying to plan future ML course offerings, and I would like  
some feedback on HW0. Please take this anonymous poll (also linked to on Slack).  
Thank you! https://tinyurl.com/ybhr5dfn

We have a Slack channel.  
Whether you are registered or not, please join: https://tinyurl.com/y97uha42 
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The regression problem
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Given past sales data on zillow.com, predict: 
     y = House sale price from  
     x = {# sq. ft., zip code, date of sale, etc.} 

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
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# square feet
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Given past sales data on zillow.com, predict: 
     y = House sale price from  
     x = {# sq. ft., zip code, date of sale, etc.} 

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ xT
i w

min
w

nX

i=1

�
yi � xT

i w
�2

best linear fit
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The regression problem in matrix notation

y =

2

64
y1
...
yn

3

75 X =

2

64
xT
1
...
xT
n

3

75

= argmin
w

(y �Xw)T (y �Xw)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2
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The regression problem in matrix notation

= argmin
w

(y �Xw)T (y �Xw)

bwLS = argmin
w

||y �Xw||22
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The regression problem in matrix notation

= (XTX)�1XTy

bwLS = argmin
w

||y �Xw||22

What about an offset?

bwLS ,bbLS = argmin
w,b

nX

i=1

�
yi � (xT

i w + b)
�2

= argmin
w,b

||y � (Xw + 1b)||22
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Dealing with an offset

bwLS ,bbLS = argmin
w,b

||y � (Xw + 1b)||22
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Dealing with an offset

If XT1 = 0 (i.e., if each feature is mean-zero) then

bwLS = (XTX)�1XTY

bbLS =
1

n

nX

i=1

yi

XTX bwLS +bbLSX
T1 = XTy

1TX bwLS +bbLS1
T1 = 1Ty

bwLS ,bbLS = argmin
w,b

||y � (Xw + 1b)||22
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The regression problem in matrix notation

= (XTX)�1XTy

bwLS = argmin
w

||y �Xw||22

But why least squares?

Consider yi = xT
i w + ✏i where ✏i

i.i.d.⇠ N (0,�2)

P (y|x,w,�) =
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Maximizing log-likelihood

Maximize:
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logP (D|w,�) = log( 1p
2⇡�

)n
nY

i=1

e�
(yi�xT

i w)2

2�2
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MLE is LS under linear model
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bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = argmax
w

P (D|w,�)

bwLS = bwMLE = (XTX)�1XTY
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The regression problem
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# square feet

S
al

e 
P

ric
e

Given past sales data on zillow.com, predict: 
     y = House sale price from  
     x = {# sq. ft., zip code, date of sale, etc.} 

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ xT
i w

min
w

nX

i=1

�
yi � xT

i w
�2

best linear fit
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The regression problem
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date of sale

S
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e 
P

ric
e

Given past sales data on zillow.com, predict: 
     y = House sale price from  
     x = {# sq. ft., zip code, date of sale, etc.} 

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ xT
i w

min
w

nX

i=1

�
yi � xT

i w
�2

best linear fit
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ xT
i w

min
w

nX

i=1

�
yi � xT

i w
�2

Transformed data:
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ xT
i w

min
w

nX

i=1

�
yi � xT

i w
�2

Transformed data:

in d=1:

h : Rd ! Rp maps original
features to a rich, possibly
high-dimensional space

hj(x) =
1

1 + exp(uT
j x)

hj(x) = (uT
j x)

2

for d>1, generate {uj}pj=1 ⇢ Rd

hj(x) = cos(uT
j x)

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775
=

2

6664

x
x2

...
xp

3

7775
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: linear 

Loss: least squares

yi ⇡ xT
i w

min
w

nX

i=1

�
yi � xT

i w
�2

Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear

Loss: least squares

yi ⇡ h(xi)
Tw w 2 Rp

min
w

nX

i=1

�
yi � h(xi)

Tw
�2
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear

Loss: least squares

yi ⇡ h(xi)
Tw w 2 Rp

min
w

nX

i=1

�
yi � h(xi)

Tw
�2

date of sale

S
al

e 
P

ric
e

best linear fit
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear

Loss: least squares

yi ⇡ h(xi)
Tw w 2 Rp

min
w

nX

i=1

�
yi � h(xi)

Tw
�2

date of sale

S
al

e 
P

ric
e

small p fit
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The regression problem

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear

Loss: least squares

yi ⇡ h(xi)
Tw w 2 Rp

min
w

nX

i=1

�
yi � h(xi)

Tw
�2

date of sale

S
al

e 
P

ric
e

large p fit

What’s going on here?
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Bias-Variance Tradeoff
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x

y

PXY (X = x, Y = y)
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x

y

PXY (X = x, Y = y)

x0 x1

PXY (Y = y|X = x0)

PXY (Y = y|X = x1)



Statistical Learning
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PXY (Y = y|X = x0)

PXY (Y = y|X = x1)
x

y

PXY (X = x, Y = y)

x0 x1

⌘(x) = EXY [Y |X = x]

Ideally, we want to find:
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PXY (X = x, Y = y)
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Statistical Learning
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x

y

PXY (X = x, Y = y)
⌘(x) = EXY [Y |X = x]

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:



Statistical Learning
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x

y

PXY (X = x, Y = y)

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

⌘(x) = EXY [Y |X = x]

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:



Statistical Learning
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x

y

PXY (X = x, Y = y)

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

⌘(x) = EXY [Y |X = x]

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

We care about future predictions: EXY [(Y � bf(X))2]



Statistical Learning
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x

y

PXY (X = x, Y = y)

Each draw D = {(xi, yi)}ni=1 results in di↵erent bf

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

⌘(x) = EXY [Y |X = x]

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:



Statistical Learning
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x

y

PXY (X = x, Y = y)

Each draw D = {(xi, yi)}ni=1 results in di↵erent bf

ED[ bf(x)]
bf = argmin

f2F

1

n

nX

i=1

(yi � f(xi))
2

⌘(x) = EXY [Y |X = x]

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:



Bias-Variance Tradeoff
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EY |X=x[ED[(Y � bfD(x))2]] = EY |X=x[ED[(Y � ⌘(x) + ⌘(x)� bfD(x))2]]

⌘(x) = EXY [Y |X = x] bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2



Bias-Variance Tradeoff
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irreducible error 
Caused by stochastic  

label noise

learning error 
Caused by either using too “simple”  

of a model or not enough  
data to learn the model accurately

⌘(x) = EXY [Y |X = x] bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

EXY [ED[(Y � bfD(x))2]
��X = x] = EXY [ED[(Y � ⌘(x) + ⌘(x)� bfD(x))2]

��X = x]

=EXY [ED[(Y � ⌘(x))2 + 2(Y � ⌘(x))(⌘(x)� bfD(x))

+ (⌘(x)� bfD(x))2]
��X = x]

=EXY [(Y � ⌘(x))2
��X = x] + ED[(⌘(x)� bfD(x))2]



Bias-Variance Tradeoff
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ED[(⌘(x)� bfD(x))2] = ED[(⌘(x)� ED[ bfD(x)] + ED[ bfD(x)]� bfD(x))2]

⌘(x) = EXY [Y |X = x] bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2



Bias-Variance Tradeoff
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=(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]

=ED[(⌘(x)� ED[ bfD(x)])2 + 2(⌘(x)� ED[ bfD(x)])(ED[ bfD(x)]� bfD(x))

+ (ED[ bfD(x)]� bfD(x))2]

ED[(⌘(x)� bfD(x))2] = ED[(⌘(x)� ED[ bfD(x)] + ED[ bfD(x)]� bfD(x))2]

biased squared variance

⌘(x) = EXY [Y |X = x] bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2



Bias-Variance Tradeoff

Model too simple ➔ high bias, cannot fit well to data 

Model too complex ➔ high variance, small changes in 
data change learned function a lot

EXY [ED[(Y � bfD(x))2]
��X = x] = EXY [(Y � ⌘(x))2

��X = x]

biased squared variance

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]

irreducible error



Bias-Variance Tradeoff

EXY [ED[(Y � bfD(x))2]
��X = x] = EXY [(Y � ⌘(x))2

��X = x]

biased squared variance

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]

irreducible error



©2017 Kevin Jamieson 37

Overfitting

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

Oct 5, 2017



Bias-Variance Tradeoff

■ Choice of hypothesis class introduces learning bias 
More complex class → less bias 
More complex class → more variance 

■ But in practice?? 



Bias-Variance Tradeoff

■ Choice of hypothesis class introduces learning bias 
More complex class → less bias 
More complex class → more variance 

■ But in practice??  
■ Before we saw how increasing the feature space can 

increase the complexity of the learned estimator:

F1 ⇢ F2 ⇢ F3 ⇢ . . .

Complexity grows as k grows

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

Complexity (k)

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

Complexity (k)

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;Each line is i.i.d. draw of D or T

Plot from Hastie et al



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;

TRAIN error is optimistically 
biased because it is evaluated 
on the data it trained on. TEST 
error is unbiased only if T is 
never used to train the model 
or even pick the complexity k. 



Test set error
■ Given a dataset, randomly split it into two parts:  

Training data: 
Test data: 

■ Use training data to learn predictor 
■ e.g.,  
■ use training data to pick complexity k (next lecture) 

■ Use test data to report predicted performance
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D
T Important: D \ T = ;

1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2



Overfitting

■ Overfitting: a learning algorithm overfits the 
training data if it outputs a solution w when there 
exists another solution w’ such that:
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How many points do I use for 
training/testing?

■ Very hard question to answer! 
Too few training points, learned model is bad 
Too few test points, you never know if you reached a good solution 

■ Bounds, such as Hoeffding’s inequality can help: 

■ More on this later this quarter, but still hard to answer 
■ Typically: 

If you have a reasonable amount of data 90/10 splits are common  
If you have little data, then you need to get fancy (e.g., bootstrapping) 
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Recap

■ Learning is… 
Collect some data 
■ E.g., housing info and sale price 

Randomly split dataset into TRAIN and TEST 
■ E.g., 80% and 20%, respectively 

Choose a hypothesis class or model 
■ E.g., linear  

Choose a loss function 
■ E.g., least squares 

Choose an optimization procedure 
■ E.g., set derivative to zero to obtain estimator 

Justifying the accuracy of the estimate 
■ E.g., report TEST error
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