Announcements

Let $X \sim \mathcal{N}(\mu, \Sigma)$ where $X \in \mathbb{R}^{d}$

1. Let $Y=A X+b$. For what $\widetilde{\mu}, \widetilde{\Sigma}$ is $Y \sim \mathcal{N}(\widetilde{\mu}, \widetilde{\Sigma})$
2. Suppose I can generate independent Gaussians $Z \sim \mathcal{N}(0,1)$ (e.g., numpy.random.randn). How can I use this to generate X ?

Regularization

Machine Learning - CSE546 Kevin Jamieson University of Washington October 10, 2016

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$

$$
=\arg \min (\mathbf{y}-\mathbf{X} w)^{T}(\mathbf{y}-\mathbf{X} w)
$$

when $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ exists.... $=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$

$$
=\arg \min _{w}(\mathbf{y}-\mathbf{X} w)^{T}(\mathbf{y}-\mathbf{X} w)
$$

$$
=\arg \min _{w} w^{T}\left(\mathbf{X}^{T} \mathbf{X}\right) w-2 y^{T} \mathbf{X} w
$$

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$

$$
=\arg \min _{w}(\mathbf{y}-\mathbf{X} w)^{T}(\mathbf{y}-\mathbf{X} w)
$$

$$
=\arg \min _{w} w^{T}\left(\mathbf{X}^{T} \mathbf{X}\right) w-2 y^{T} \mathbf{X} w
$$

What if $x_{i} \in \mathbb{R}^{d}$ and $d>n$?

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$
When $x_{i} \in \mathbb{R}^{d}$ and $d>n$ the objective function is flat in some directions:

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$
When $x_{i} \in \mathbb{R}^{d}$ and $d>n$ the objective function is flat in some directions:

Implies optimal solution is underconstrained and unstable due to lack of curvature:

- small changes in training data result in large changes in solution
- often the magnitudes of w are "very large"

Regularization imposes "simpler" solutions by a "complexity" penalty

Ridge Regression

- Old Least squares objective:
$\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$

- Ridge Regression objective:

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Minimizing the Ridge Regression Objective

$$
\begin{aligned}
\widehat{w}_{\text {ridge }} & =\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+b\right)\right)^{2}+\lambda\|w\|_{2}^{2} \\
& =\arg \min _{w}\|\mathbf{y}-(\mathbf{X} w+\mathbf{1} b)\|_{2}^{2}+\lambda\|w\|_{2}^{2}
\end{aligned}
$$

Shrinkage Properties

$$
\widehat{w}_{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- If orthonormal features/basis: $\mathbf{X}^{T} \mathbf{X}=I$

Ridge Regression: Effect of Regularization

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+b\right)\right)^{2}+\lambda\|w\|_{2}^{2}
$$

- Solution is indexed by the regularization parameter λ
- Larger λ
- Smaller λ
- As $\lambda \rightarrow 0$
- As $\lambda \rightarrow \infty$

Ridge Regression: Effect of Regularization

$\mathcal{D}^{i, i, d .} P_{X Y}$
$\widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}=\arg \min _{w} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}$

TRAIN error:

$$
\frac{1}{|\mathcal{D |}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}
$$

TRUE error:

$$
\mathbb{E}\left[\left(Y-X^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}\right]
$$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}
\end{aligned}
$$

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

Ridge Regression: Effect of Regularization

$\mathcal{D} \stackrel{i . i . d .}{\sim} P_{X Y}$
$\widehat{w}_{\mathcal{D}, r, i d g e}^{(\lambda)}=\underset{w}{\arg \min _{w}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}$

TRAIN error:

$$
\frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text {,ridge }}^{(\lambda)}\right)^{2}
$$

TRUE error:

$$
\mathbb{E}\left[\left(Y-X^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}\right]
$$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}
\end{aligned}
$$

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

Ridge Coefficient Path

From
Kevin Murphy textbook

- Typical approach: select λ using cross validation, up next

What you need to know...

- Regularization
\square Penalizes for complex models
- Ridge regression
$\square \mathrm{L}_{2}$ penalized least-squares regression
\square Regularization parameter trades off model complexity with training error

Cross-Validation

Machine Learning - CSE546 Kevin Jamieson University of Washington October 10, 2016

How... How... How???????

- How do we pick the regularization constant $\lambda .$.
- How do we pick the number of basis functions...
- We could use the test data, but...

How... How... How???????

- How do we pick the regularization constant $\lambda . .$.
- How do we pick the number of basis functions...
- We could use the test data, but...
- Never ever train on the test data

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
\square - training data
- $D \mathrm{j}$ - training data with j th data point $\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$ moved to validation set
- Learn classifier $f_{D \mathrm{Jj}}$ with $D \backslash \mathrm{j}$ dataset
- Estimate true error as squared error on predicting $\mathbf{y}_{\mathbf{j}}$:
- Unbiased estimate of error ${ }_{\text {true }}\left(\boldsymbol{f}_{D \mathrm{D})}\right)$!

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
- D - training data
$\square D \mathrm{j}$ - training data with j th data point $\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$ moved to validation set
- Learn classifier $f_{D \mathrm{j}}$ with $D \backslash \mathrm{j}$ dataset
- Estimate true error as squared error on predicting $\mathbf{y}_{\mathbf{j}}$:
- Unbiased estimate of error ${ }_{\text {true }}\left(f_{D j}\right)$!
- LOO cross validation: Average over all data points j :
\square For each data point you leave out, learn a new classifier $f_{D \mathrm{j}}$
- Estimate error as:

$$
\text { error }_{L O O}=\frac{1}{n} \sum_{j=1}^{n}\left(y_{j}-f_{\mathcal{D} \backslash j}\left(x_{j}\right)\right)^{2}
$$

LOO cross validation is (almost) unbiased estimate of true error of h_{D} !

- When computing LOOCV error, we only use \mathbf{N}-1 data points
\square So it's not estimate of true error of learning with N data points
\square Usually pessimistic, though - learning with less data typically gives worse answer
- LOO is almost unbiased! Use LOO error for model selection!!!
- E.g., picking λ

Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
\square Learns in only 1 second
- Computing LOO will take about 1 day!!!

Use k-fold cross validation

- Randomly divide training data into k equal parts
- D_{1}, \ldots, D_{k}
- For each i
\square Learn classifier $f_{D I D i}$ using data point not in D_{i}
\square Estimate error of $f_{D I D i}$ on validation set D_{i} :

$$
\operatorname{error}_{\mathcal{D}_{i}}=\frac{1}{\left|\mathcal{D}_{i}\right|} \sum_{\left(x_{j}, y_{j}\right) \in \mathcal{D}_{i}}\left(y_{j}-f_{\mathcal{D} \backslash \mathcal{D}_{i}}\left(x_{j}\right)\right)^{2}
$$

Use k-fold cross validation

- Randomly divide training data into k equal parts
D_{1}, \ldots, D_{k}
- For each i
\square Learn classifier $f_{D \mid D i}$ using data point not in D_{i}
\square Estimate error of $f_{D I D i}$ on validation set D_{i} :

$$
\operatorname{error}_{\mathcal{D}_{i}}=\frac{1}{\left|\mathcal{D}_{i}\right|} \sum_{\left(x_{j}, y_{j}\right) \in \mathcal{D}_{i}}\left(y_{j}-f_{\mathcal{D} \backslash \mathcal{D}_{i}}\left(x_{j}\right)\right)^{2}
$$

- k-fold cross validation error is average over data splits:

$$
\text { error }_{k-\text { fold }=\frac{1}{k} \sum_{i=1}^{k} \text { error }_{\mathcal{D}_{i}} \text { }}
$$

- k-fold cross validation properties:
\square Much faster to compute than LOO
\square More (pessimistically) biased - using much less data, only $n(k-1) / k$
- Usually, k=10

Recap

- Given a dataset, begin by splitting into
- Model selection: Use k-fold cross-validation on TRAIN to train predictor and choose magic parameters such as λ

VAL-3 TRAIN-3

- Model assessment: Use TEST to assess the accuracy of the model you output
- Never ever ever ever ever train or choose parameters based on the test data

Example

- Given 10,000-dimensional data and n examples, we pick a subset of 50 dimensions that have the highest correlation with labels in the training set:

$$
50 \text { indices } \mathrm{j} \text { that have largest } \frac{\left|\sum_{i=1}^{n} x_{i, j} y_{i}\right|}{\sqrt{\sum_{i=1}^{n} x_{i, j}^{2}}}
$$

- After picking our 50 features, we then use CV to train ridge regression with regularization λ
- What's wrong with this procedure?

Bootstrap

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 10, 2016

Limitations of CV

- An 80/20 split throws out a relatively large amount of data if only have, say, 20 examples.
- Test error is informative, but how accurate is this number? (e.g., 3/5 heads vs. 30/50)
- How do I get confidence intervals on statistics like the median or variance of a distribution?
- Instead of the error for the entire dataset, what if I want to study the error for a particular example x?

Limitations of CV

- An 80/20 split throws out a relatively large amount of data if only have, say, 20 examples.
- Test error is informative, but how accurate is this number? (e.g., 3/5 heads vs. 30/50)
- How do I get confidence intervals on statistics like the median or variance of a distribution?
- Instead of the error for the entire dataset, what if I want to study the error for a particular example x?

The Bootstrap: Developed by Efron in 1979.
"The most important innovation in statistics of the last 40 years"

- famous ML researcher and statistician, 2015

Bootstrap: basic idea

Given dataset drawn iid samples with CDF F_{Z} :

$$
\mathcal{D}=\left\{z_{1}, \ldots, z_{n}\right\} \stackrel{i . i . d .}{\sim} F_{Z}
$$

We compute a statistic of the data to get: $\hat{\theta}=t(\mathcal{D})$

Bootstrap: basic idea

Given dataset drawn iid samples with CDF F_{Z} :

$$
\mathcal{D}=\left\{z_{1}, \ldots, z_{n}\right\} \stackrel{i . i . d .}{\sim} F_{Z}
$$

We compute a statistic of the data to get: $\widehat{\theta}=t(\mathcal{D})$
For $b=1, \ldots, B$ define the b th bootstrapped dataset as drawing n samples with replacement from D

$$
\mathcal{D}^{* b}=\left\{z_{1}^{* b}, \ldots, z_{n}^{* b}\right\} \stackrel{i . i . d .}{\sim} \widehat{F}_{Z, n}
$$

and the b th bootstrapped statistic as: $\quad \theta^{* b}=t\left(\mathcal{D}^{* b}\right)$

Bootstrap: basic idea

Given dataset drawn iid samples with CDF F_{Z} :

$$
\mathcal{D}=\left\{z_{1}, \ldots, z_{n}\right\} \stackrel{i . i . d .}{\sim} F_{Z} \quad \widehat{\theta}=t(\mathcal{D})
$$

For $\mathrm{b}=1, \ldots, \mathrm{~B}$, samples sampled with replacement from D

$$
\mathcal{D}^{* b}=\left\{z_{1}^{* b}, \ldots, z_{n}^{* b}\right\} \stackrel{i . i . d .}{\sim} \widehat{F}_{Z, n} \quad \theta^{* b}=t\left(\mathcal{D}^{* b}\right)
$$

Bootstrap: basic idea

Given dataset drawn iid samples with CDF F_{Z} :

$$
\mathcal{D}=\left\{z_{1}, \ldots, z_{n}\right\} \stackrel{i . i . d .}{\sim} F_{Z} \quad \widehat{\theta}=t(\mathcal{D})
$$

For $\mathrm{b}=1, \ldots, \mathrm{~B}$, samples sampled with replacement from D

$$
\mathcal{D}^{* b}=\left\{z_{1}^{* b}, \ldots, z_{n}^{* b}\right\} \stackrel{i . i . d .}{\sim} \widehat{F}_{Z, n} \quad \theta^{* b}=t\left(\mathcal{D}^{* b}\right)
$$

$$
\sup \left|\widehat{\boldsymbol{F}}_{n}(x)-\boldsymbol{H}(x)\right| \rightarrow 0 \quad a \mathrm{X}, \quad \rightarrow \quad \infty
$$

Applications

Common applications of the bootstrap:

- Estimate parameters that escape simple analysis like the variance or median of an estimate
- Confidence intervals
- Estimates of error for a particular example:

Figures from Hastie et al

Takeaways

Advantages:

- Bootstrap is very generally applicable. Build a confidence interval around anything
- Very simple to use
- Appears to give meaningful results even when the amount of data is very small
- Very strong asymptotic theory (as num. examples goes to infinity)

Takeaways

Advantages:

- Bootstrap is very generally applicable. Build a confidence interval around anything
- Very simple to use
- Appears to give meaningful results even when the amount of data is very small
- Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages

- Very few meaningful finite-sample guarantees
- Potentially computationally intensive
- Reliability relies on test statistic and rate of convergence of empirical CDF to true CDF, which is unknown
- Poor performance on "extreme statistics" (e.g., the max)

Not perfect, but better than nothing.

Recap

- Learning is...
\square Collect some data
- E.g., housing info and sale price
\square Randomly split dataset into TRAIN, VAL, and TEST
- E.g., 80\%, 10\%, and 10\%, respectively
\square Choose a hypothesis class or model
- E.g., linear with non-linear transformations
\square Choose a loss function
- E.g., least squares with ridge regression penalty on TRAIN
\square Choose an optimization procedure
- E.g., set derivative to zero to obtain estimator, cross-validation on VAL to pick num. features and amount of regularization
\square Justifying the accuracy of the estimate
- E.g., report TEST error with Bootstrap confidence interval

