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Let X ⇠ N (µ,⌃) where X 2 Rd

1. Let Y = AX + b. For what eµ, e⌃ is Y ⇠ N (eµ, e⌃)

2. Suppose I can generate independent Gaussians Z ⇠ N (0, 1)
(e.g., numpy.random.randn). How can I use this to generate X?
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Regularization in Linear Regression
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Recall Least Squares:
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What if xi 2 Rd and d > n?
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When xi 2 Rd and d > n the objective function is flat in some directions:
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Recall Least Squares:
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When xi 2 Rd and d > n the objective function is flat in some directions:

Implies optimal solution is underconstrained 
and unstable due to lack of curvature: 
• small changes in training data result in large 

changes in solution 
• often the magnitudes of w are “very large”

Regularization imposes “simpler” solutions by a 
“complexity” penalty



Ridge Regression
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■ Old Least squares objective:  

■ Ridge Regression objective: 
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Minimizing the Ridge Regression Objective
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Shrinkage Properties

10

■ If orthonormal features/basis:  
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bwridge = (XTX+ �I)�1XTy

XTX = I



Ridge Regression: Effect of Regularization
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■ Solution is indexed by the regularization parameter λ 
■ Larger λ 

■ Smaller λ  

■ As λ ! 0 

■ As λ !∞ 
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Ridge Regression: Effect of Regularization
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TRAIN error: 

TRUE error: 

TEST error: 
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TRAIN error: 

TRUE error: 

TEST error: 

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;Each line is i.i.d. draw of D or T
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Ridge Coefficient Path

■ Typical approach: select λ using cross validation, up next
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From  
Kevin Murphy 
textbook
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What you need to know…

■ Regularization 
Penalizes for complex models 

■ Ridge regression 
L2 penalized least-squares regression 
Regularization parameter trades off model complexity 
with training error
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How… How… How???????
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■ How do we pick the regularization constant λ… 
■ How do we pick the number of basis functions… 

■ We could use the test data, but… 



How… How… How???????

■ How do we pick the regularization constant λ… 
■ How do we pick the number of basis functions… 

■ We could use the test data, but… 
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■ Never ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
train on the test data



(LOO) Leave-one-out cross validation

■ Consider a validation set with 1 example: 
D – training data 
D\j – training data with j th data point (xj ,yj) moved to validation set 

■ Learn classifier fD\j with D\j dataset 
■ Estimate true error as squared error on predicting yj: 

Unbiased estimate of errortrue(fD\j)! 
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(LOO) Leave-one-out cross validation

■ Consider a validation set with 1 example: 
D – training data 
D\j – training data with j th data point (xj ,yj) moved to validation set 

■ Learn classifier fD\j with D\j dataset 
■ Estimate true error as squared error on predicting yj: 

Unbiased estimate of errortrue(fD\j)! 

■ LOO cross validation: Average over all data points j: 
For each data point you leave out, learn a new classifier fD\j 
Estimate error as: 
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errorLOO =
1

n
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2



LOO cross validation is (almost)  
unbiased estimate of true error of hD!

■ When computing LOOCV error, we only use N-1 data points 
So it’s not estimate of true error of learning with N data points 
Usually pessimistic, though – learning with less data typically gives worse answer 

■ LOO is almost unbiased! Use LOO error for model selection!!! 
E.g., picking λ
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Computational cost of LOO

■ Suppose you have 100,000 data points 
■ You implemented a great version of your learning 

algorithm 
Learns in only 1 second  

■ Computing LOO will take about 1 day!!! 
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 Use k-fold cross validation

■ Randomly divide training data into k equal parts 
D1,…,Dk 

■ For each i 
Learn classifier fD\Di using data point not in Di  
Estimate error of fD\Di on validation set Di: 
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 Use k-fold cross validation

■ Randomly divide training data into k equal parts 
D1,…,Dk 

■ For each i 
Learn classifier fD\Di using data point not in Di  
Estimate error of fD\Di on validation set Di: 

■ k-fold cross validation error is average over data splits: 

■ k-fold cross validation properties: 
Much faster to compute than LOO 
More (pessimistically) biased – using much less data, only n(k-1)/k 
Usually, k = 10
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Recap

■ Given a dataset, begin by splitting into  

■ Model selection: Use k-fold cross-validation on 
TRAIN to train predictor and choose magic 
parameters such as λ 
 

■ Model assessment: Use TEST to assess the 
accuracy of the model you output 
■ Never ever ever ever ever train or choose 

parameters based on the test data
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TESTTRAIN

TRAIN

TRAIN-1 VAL-1

TRAIN-3VAL-3

TRAIN-2VAL-2TRAIN-2



Example

■ Given 10,000-dimensional data and n examples, 
we pick a subset of 50 dimensions that have the 
highest correlation with labels in the training set: 
 
 

■ After picking our 50 features, we then use CV to 
train ridge regression with regularization λ  

■ What’s wrong with this procedure?
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50 indices j that have largest 
|
Pn

i=1 xi,jyi|qPn
i=1 x

2
i,j
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Limitations of CV

■ An 80/20 split throws out a relatively large amount of data if 
only have, say, 20 examples. 

■ Test error is informative, but how accurate is this number? 
(e.g., 3/5 heads vs. 30/50) 

■ How do I get confidence intervals on statistics like the median 
or variance of a distribution? 

■ Instead of the error for the entire dataset, what if I want to 
study the error for a particular example x?
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only have, say, 20 examples. 

■ Test error is informative, but how accurate is this number? 
(e.g., 3/5 heads vs. 30/50) 

■ How do I get confidence intervals on statistics like the median 
or variance of a distribution? 
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              The Bootstrap: Developed by Efron in 1979. 

“The most important innovation in statistics of the last 40 years”  
       — famous ML researcher and statistician, 2015



Bootstrap: basic idea
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Given dataset drawn iid samples with CDF       : 

D = {z1, . . . , zn}
i.i.d.⇠ FZ

We compute a statistic of the data to get: b✓ = t(D)

D = {z1, . . . , zn}
i.i.d.⇠ FZ



Bootstrap: basic idea
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Given dataset drawn iid samples with CDF       : 

For b=1,…,B define the bth bootstrapped dataset as 
drawing n samples with replacement from D  

D = {z1, . . . , zn}
i.i.d.⇠ FZ

We compute a statistic of the data to get:

D⇤b = {z⇤b1 , . . . , z⇤bn } i.i.d.⇠ bFZ,n

b✓ = t(D)

✓⇤b = t(D⇤b)and the bth bootstrapped statistic as:

D = {z1, . . . , zn}
i.i.d.⇠ FZ
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Given dataset drawn iid samples with CDF       : 

D = {z1, . . . , zn}
i.i.d.⇠ FZ

D⇤b = {z⇤b1 , . . . , z⇤bn } i.i.d.⇠ bFZ,n

b✓ = t(D)

✓⇤b = t(D⇤b)

D = {z1, . . . , zn}
i.i.d.⇠ FZ

For b=1,…,B, samples sampled with replacement from D  

FZ

bFZ,60



Bootstrap: basic idea
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Given dataset drawn iid samples with CDF       : 

D = {z1, . . . , zn}
i.i.d.⇠ FZ

D⇤b = {z⇤b1 , . . . , z⇤bn } i.i.d.⇠ bFZ,n

b✓ = t(D)

✓⇤b = t(D⇤b)

D = {z1, . . . , zn}
i.i.d.⇠ FZ

For b=1,…,B, samples sampled with replacement from D  

FZ

bFZ,60

sup
x

| bFn(x)� F (x)| ! 0 as n ! 1

b✓



Applications
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Common applications of the bootstrap: 
• Estimate parameters that escape simple analysis like the variance or median of an 

estimate 
• Confidence intervals 
• Estimates of error for a particular example:  

b✓D ✓⇤b for b = 1, . . . , 10 95% confidence interval

Figures from Hastie et al



Takeaways
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Advantages: 
• Bootstrap is very generally applicable. Build a confidence interval 

around anything 
• Very simple to use 
• Appears to give meaningful results even when the amount of data is very 

small 
• Very strong asymptotic theory (as num. examples goes to infinity) 
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Advantages: 
• Bootstrap is very generally applicable. Build a confidence interval 

around anything 
• Very simple to use 
• Appears to give meaningful results even when the amount of data is very 

small 
• Very strong asymptotic theory (as num. examples goes to infinity) 

Disadvantages 
• Very few meaningful finite-sample guarantees  
• Potentially computationally intensive 
• Reliability relies on test statistic and rate of convergence of empirical 

CDF to true CDF, which is unknown 
• Poor performance on “extreme statistics”  (e.g., the max)

Not perfect, but better than nothing.



Recap

■ Learning is… 
Collect some data 
■ E.g., housing info and sale price 

Randomly split dataset into TRAIN, VAL, and TEST 
■ E.g., 80%, 10%, and 10%, respectively 

Choose a hypothesis class or model 
■ E.g., linear with non-linear transformations 

Choose a loss function 
■ E.g., least squares with ridge regression penalty on TRAIN 

Choose an optimization procedure 
■ E.g., set derivative to zero to obtain estimator, cross-validation on 

VAL to pick num. features and amount of regularization 
Justifying the accuracy of the estimate 
■ E.g., report TEST error with Bootstrap confidence interval

37©2017 Kevin Jamieson


