Get [gtest on of A
Announcements = '« v

" S
Let X ~ N (u,Y) where X € R¢

1. Let Y[= AX + b. For what 0L,YisY ~ N5, X)
L=Aptb 2= [E [ty- E6y-E0 | = [BJa (x- e F | =ATA

2. Suppose I can generate independent Gaussians Z ~ N(0, 1)
(e.g., numpy .random.randn). How can I use this to generate X7

‘”A/(O I> lF%?*b:( = II—[X]

de)  dxd

E[(A3 <6 -BLazwIX T] - &z[/t 54 = AN 2
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Regularization in Linear Regression
" S

n

N . 2
Recall Least Squares: ;g = arg min Z (yi — x] w)
w .

1=1
— argmin(y — Xw)! (y — Xw)

when (X'X) lexists.. = (XTX)'XTy




Regularization in Linear Regression
" S

n

N . 2
Recall Least Squares: ;g = arg min Z (yi — x] w)
w .

1=1
— argmin(y — Xw)! (y — Xw)

In general: — argminw? (X' X)w — 2y* Xw



Regularization in Linear Regression

[ |
- mn
Recall Least Squares: ;g = arg min Z (yi — a:;-rw)Q
i=1
(XTX\LJ" Xrlj = arg mui)n(y — Xw)T(y — Xw)
In general: — argminw? (X' X)w — 2y* Xw

w

//+ -=\ - 4

y +=a —

n

(1 — 2 w)? + (g2 — 23 w)* + - (o — 2w)” = ) (i — 2 w)*

1=1

What if z; € R? and d > n?

©2017 Kevin Jamieson 5



Regularization in Linear Regression
" S

mn
. . 2
Recall Least Squares: ;g = arg min E (yi — x] w)
w
i—1

When z; € R? and d > n the objective function is flat in some directions:
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Regularization in Linear Regression
"

mn
N . 2
Recall Least Squares: ;g = arg min E (yi — x] w)
w
i—1

When z; € R? and d > n the objective function is flat in some directions:

Implies optimal solution is underconstrained ’ /

and unstable due to lack of curvature:

* small changes in training data result in large
changes in solution

* often the magnitudes of w are “very large”

Regularization imposes “simpler” solutions by a
“complexity” penalty

©2017 Kevin Jamieson



Ridge Regression

= Old Least squares objective: n ,
~ : T
Wrs = argmun E (yz — X w)

i=1
: + + 4+ Tmm—
= Ridge Regression objective: n
AN . 2
Wridge — arg ml“& (yz — m;,rw) + )‘Hw”g
w ! e ——

“- D .=
E—— \
+ N + ... + . + A = 4
‘/ \ —] —

N 4




Minimizing the Ridge Regression Objective
" _

wmdge — argmlnz CC W + b)) + >\Hw||%
=1
= argmin |ly — (Xw + 1b)[|3 + Al|w|l3

= I G- 25V 2 XK =2 4
r -+>\Jw
- 0«”9&«:4 T(er +%I§w - Z‘j XLJ M

Ve 2(x';<+,\i>w 2X'y =0

XTi'}O

=l
w,{,. oy = (OXAE) Xy



Shrinkage Properties
"
Wridge = (XTX + M) X!y
= |f orthonormal features/basis: XTX =/
\V4

- (I-fkr)"qu
- 1 7
- Tea NY



Ridge Regression: Effect of Regularization
" JEE—
Wridge = arg mu%nz (yi — (z] w + b))2 + AJwl|3
i=s )

= Solution is indexed by the regularization parameter A

] Lal'ger)\ l‘l(‘,L 6/.5\5' /OUI/ Vo\r;LnQL

] M

= Smaller A Lo«/ I ~« Im}L

= ASA>0 A

©2017 Kevin Jamieson



Ridge Regression: Effect of Regularization

"
i.i.d. -
D " Py TRAIN error:
wg\az"idge = arg Hgn ﬁ Z (yl B w?w)2 + )\Hng 1| Z (y'L - xzﬂw%iidQe)Q
— 7 (2i,y:) €D D| (zs,y:)€ED
TRUE error:
T ~(N) 2
E[(Y - X wD,ridge) ]
TEST error:
ii.d.
T '~ Pxy
1 ~(\
m Z (yi - xzrwé),)ridge)2
(zi,y;)€ED

Important: DNT =0

©2017 Kevin Jamieson 12



Ridge Regression: Effect of Regularization
" JEE

~(\) _ o1
WP rigge = ATGMIN —

1.2

1.0

08

06

0.4

02

0.0

1.1.d.
D '~ Pxy
Y (yi—zfw) + Mwll

"l 2
zvyz)ED

Low Bias
High Variance

High Bias
Low Varance

‘Each line is i.i.d. draw of D or T

10 15 20 25

" large A 1/ small A~

©2017 Kevilt Jamieson

TRAIN error:

1 ~
ﬁ Z (yi — x?wg;\,?ridge>2
(zi,y:)€ED

TRUE error:
~(\
E[(Y — XT%) 4,.)7

TEST error:
ii.d.
1
m Z (yi — xzrﬁj\g\,)ridge)2
(zi,y;)€ED

Important: DNT =0

13



Ridge Coefficient Path

0.6
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04F

From
Kevin Murphy
textbook
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( X swaller )

= Typical approach: select A using cross validation, up next

©2017 Kevin Jamieson



What you need to know...

" JE
= Regularization
Penalizes for complex models
= Ridge regression
L, penalized least-squares regression

Regularization parameter trades off model complexity
with training error

©2017 Kevin Jamieson
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" JEE—
= How do we pick the reqularization constant A...
= How do we pick the number of basis functions...

= \WWe could use the test data, but...



How... How... How?7?7?7?7?7°?7
» BN

= How do we pick the reqularization constant A...
= How do we pick the number of basis functions...

= \WWe could use the test data, but...

= Never ever ever ever ever ever ever ever ever
EeVver ever ever ever ever ever ever ever ever
EeVer ever ever ever ever ever ever ever ever
train on the test data

©2017 Kevin Jamieson
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(LOOQO) Leave-one-out cross validation
" S

= Consider a validation set with 1 example:

D — training data

D\j — training data with jth data point (x; ,y;) moved to validation set
= Learn classifier fy; with D\j dataset
- Estimate true error as squared error on predicting y;:

Unbiased estimate of error . (fpy)!

©2017 Kevin Jamieson 19



(LOOQO) Leave-one-out cross validation

Consider a validation set with 1 example:

D — training data

D\j — training data with jth data point (x; ,y;) moved to validation set
Learn classifier fy; with D\j dataset

Estimate true error as squared error on predicting y;:
Unbiased estimate of error . (fpy)!

LOO cross validation: Average over all data points j:
For each data point you leave out, learn a new classifier fp,
Estimate error as: n

errorzo0 = ~ 3 (y; — o (@)’

n -
J=1

©2017 Kevin Jamieson 20



LOO cross validation is (almost)
unbiased estimate of true error of h)
"

=  When computing LOOCYV error, we only use N-1 data points
So it’s not estimate of true error of learning with N data points
Usually pessimistic, though — learning with less data typically gives worse answer

= LOO is almost unbiased! Use LOO error for model selection!!!
E.g., picking A

©2017 Kevin Jamieson 21



Computational cost of LOO
"
= Suppose you have 100,000 data points

= You implemented a great version of your learning
algorithm

Learns in only 1 second

= Computing LOO will take about 1 day!!!



Use k-fold cross validation
" A

= Randomly divide training data into k equal parts
D,,....D,

= Foreachi
Learn classifier f,5; using data point not in D,
Estimate error of f;,;; on validation set D;:

> (i — fovoi ()

(z5,y;)€D;

Train

errorp, =

D

©2017 Kevin Jamieson
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Use k-fold cross validation
" A

= Randomly divide training data into k equal parts
D,,....D,

= Foreachi
Learn classifier f,5; using data point not in D,
Estimate error of f;,;; on validation set D;:

1
€ITOIp, = ’D’ Z (yj o fD\Di ($]))2 Du Iz Dg DL.
(atg,yg)ED } 4 S 67
= k-fold cross validation error is average over data splits: @ < °-
errory. f()l(l Z cerror D ::f ) 5 -6 ~7 g
oy : kg !
= k-fold cross validation properties: N
6 ¢

Much faster to compute than LOO
More (pessimistically) biased — using much less data, only n(k-1)/k

Usually, k =10

©2017 Kevin Jamieson 24



Recap

"
r Given a dataset, begin by splitting into

TRAIN TEST

= Model selection: Use k-fold cross-validation on
TRAIN to train predictor and choose magic

parameters such as A
_ TRAN . S TRAIN-2 VAL TRAIN-2

= Model assessment: Use TEST to assess the
accuracy of the model you output

= Never ever ever ever ever train or choose
parameters based on the test data



Example
"
= Given 10,000-dimensional data and n examples,
we pick a subset of 50 dimensions that have the
highest correlation with labels in the training set:

n
| D _im1 Ti3Yil
50 indices j that have largest " 5
\/ D i1 Li g

= After picking our 50 features, we then use CV to
train ridge regression with regularization A

= What's wrong with this procedure?
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Limitations of CV

" J
= An 80/20 split throws out a relatively large amount of data if
only have, say, 20 examples.

= Test error is informative, but how accurate is this number?
(e.g., 3/5 heads vs. 30/50)

= How do | get confidence intervals on statistics like the median
or variance of a distribution?

= |nstead of the error for the entire dataset, what if | want to
study the error for a particular example x7?

©2017 Kevin Jamieson

28



Limitations of CV
»

= An 80/20 split throws out a relatively large amount of data if
only have, say, 20 examples.

= Test error is informative, but how accurate is this number?
(e.g., 3/5 heads vs. 30/50)

= How do | get confidence intervals on statistics like the median
or variance of a distribution?

= |nstead of the error for the entire dataset, what if | want to
study the error for a particular example x7?

The Bootstrap: Developed by Efron in 1979.

“The most important innovation in statistics of the last 40 years”

— famous ML researcher and statistician, 2015

©2017 Kevin Jamieson 29



Bootstrap: basic idea R(=Rz<x)
*
Given dataset drawn iid samples with CDF F':
D={z1,...,2n} S FZ
We compute a stafistic of the data to get: (9 — t(D)



Bootstrap: basic idea
"
Given dataset drawn iid samples with CDF F':
D={z1,...,2n} S FZ
We compute a stafistic of the data to get: 9 — t(D)

For b=1,...,B define the bth bootstrapped dataset as
drawing n samples with replacement from D

b b by t.t.d. 1
* :{ZT,,Z;} ~ FZTL
and the bth bootstrapp #tistic as: H*b — t(D*b)
B p¥

O*’\ED :
(/
31
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_ o HY= Pz )
Bootstrap: basic idea P oSz e
"
Given dataset drawn iid samples with CDF F':
1.7.d. ~
D=Az1,...,2n} ~ Fg 0 = t(D)

For b=1,...,B, samples sampled with replacement from D

D*b _ {Zikby . Z:;b} zr@vd F\Zyn H*b _ t(D*b)

Fz 60
Iy

3 2
©2017 Kevin Jamieson  Observations



Bootstrap: basic idea
"
Given dataset drawn iid samples with CDF F':
1.1.d. ~
D=Az1,...,2n} ~ Fg 0 = t(D)

For b=1,...,B, samples sampled with replacement from D

D* = {5t ) R By, 000 = (D)

sup |[Fl,(z) — F(z)] = 0 asn — oo

Fz 60

§

Fy

Aall L (( (//w I

3 2 1 1 2 3
©2017 Kevin Jamieson ~ Obsery ations 33




Applications

" J—
Common applications of the bootstrap:
» Estimate parameters that escape simple analysis like the variance or median of an
estimate

» Confidence intervals
» Estimates of error for a particular example:

AN
D ) 95% confidence interval
w @ o
- < -«
“ ' @ o = 1/
’ P )
> o o | . N . ~ .
’ L}
- -, ° . \ . - . -*.
% 4 . ’
o ) h » o Y . » k= ¢ - >
o . >
® " -
v ] % e
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30
X X X

Figures from Hastie et al
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Takeaways
" I

Advantages:
» Bootstrap is very generally applicable. Build a confidence interval

around anything
» Very simple to use
» Appears to give meaningful results even when the amount of data is very

small
 Very strong asymptotic theory (as num. examples goes to infinity)

©2017 Kevin Jamieson



Takeaways
" I

Advantages:

» Bootstrap is very generally applicable. Build a confidence interval
around anything

» Very simple to use

» Appears to give meaningful results even when the amount of data is very
small

 Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages

 Very few meaningful finite-sample guarantees

» Potentially computationally intensive

* Reliability relies on test statistic and rate of convergence of empirical
CDF to true CDF, which is unknown

» Poor performance on “extreme statistics” (e.g., the max)

Not perfect, but better than nothing.

©2017 Kevin Jamieson



Recap

= Learningis...

Collect some data
= E.g., housing info and sale price

Randomly split dataset into TRAIN, VAL, and TEST
= E.g., 80%, 10%, and 10%, respectively
Choose a hypothesis class or model
= E.g., linear with non-linear transformations
Choose a loss function
= E.g., least squares with ridge regression penalty on TRAIN
Choose an optimization procedure

= E.g., set derivative to zero to obtain estimator, cross-validation on
VAL to pick num. features and amount of regularization

Justifying the accuracy of the estimate
= E.g., report TEST error with Bootstrap confidence interval

©2017 Kevin Jamieson
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