
Announcements

1©2017 Kevin Jamieson

If you have not already, please take this anonymous poll (also
linked to on Slack). Thank you! https://tinyurl.com/ybhr5dfn

Start thinking about projects, dates are up

©2017 Kevin Jamieson 2

Review:  
Cross-Validation
Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 12, 2016

 Use k-fold cross validation

■ Randomly divide training data into k equal parts
D1,…,Dk

■ For each i
Learn classifier fD\Di using data point not in Di
Estimate error of fD\Di on validation set Di:

■ k-fold cross validation error is average over data splits:

■ k-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased – using much less data, only n(k-1)/k
Usually, k = 10

3©2017 Kevin Jamieson

errorDi =

1

|D
i

|
X

(xj ,yj)2Di

(y

j

� fD\Di
(x

j

))

2

Recap

■ Given a dataset, begin by splitting into

■ Model selection: Use k-fold cross-validation on
TRAIN to train predictor and choose magic
parameters such as λ 
 

■ Model assessment: Use TEST to assess the
accuracy of the model you output
■ Never ever ever ever ever train or choose

parameters based on the test data
4©2017 Kevin Jamieson

TESTTRAIN

TRAIN

TRAIN-1 VAL-1

TRAIN-3VAL-3

TRAIN-2VAL-2TRAIN-2

Bootstrap: basic idea

5©2017 Kevin Jamieson

Given dataset drawn iid samples with CDF :

D = {z1, . . . , zn}
i.i.d.⇠ FZ

D⇤b = {z⇤b1 , . . . , z⇤bn } i.i.d.⇠ bFZ,n

b✓ = t(D)

✓⇤b = t(D⇤b)

D = {z1, . . . , zn}
i.i.d.⇠ FZ

For b=1,…,B, samples sampled with replacement from D

FZ

bFZ,60

sup
x

| bF
n

(x)� F (x)| ! 0 as n ! 1

b✓

Applications

©2017 Kevin Jamieson

Common applications of the bootstrap:
• Estimate parameters that escape simple analysis like the variance or median of an

estimate
• Confidence intervals
• Estimates of error for a particular example:

b✓D ✓⇤b for b = 1, . . . , 10 95% confidence interval

Figures from Hastie et al

Takeaways

©2017 Kevin Jamieson

Advantages:
• Bootstrap is very generally applicable. Build a confidence interval

around anything
• Very simple to use
• Appears to give meaningful results even when the amount of data is very

small
• Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages
• Very few meaningful finite-sample guarantees
• Potentially computationally intensive
• Reliability relies on test statistic and rate of convergence of empirical

CDF to true CDF, which is unknown
• Poor performance on “extreme statistics” (e.g., the max)

Not perfect, but better than nothing.

Recap

■ Learning is…
Collect some data
■ E.g., housing info and sale price

Randomly split dataset into TRAIN, VAL, and TEST
■ E.g., 80%, 10%, and 10%, respectively

Choose a hypothesis class or model
■ E.g., linear with non-linear transformations

Choose a loss function
■ E.g., least squares with ridge regression penalty on TRAIN

Choose an optimization procedure
■ E.g., set derivative to zero to obtain estimator, cross-validation on

VAL to pick num. features and amount of regularization
Justifying the accuracy of the estimate
■ E.g., report TEST error with Bootstrap confidence interval

8©2017 Kevin Jamieson

©2017 Kevin Jamieson 9

Simple Variable Selection 
LASSO: Sparse Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 11, 2016

Sparsity
■ Vector w is sparse, if many entries are zero

■ Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
■ If part of an online system, too slow
■ If w is sparse, prediction computation only depends on number of non-zeros

10©2017 Kevin Jamieson

bwLS = argmin
w

nX

i=1

�
yi � x

T
i w

�2

Sparsity
■ Vector w is sparse, if many entries are zero

■ Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
■ If part of an online system, too slow
■ If w is sparse, prediction computation only depends on number of non-zeros

Interpretability: What are the  
relevant dimension to make a  
prediction?
■ E.g., what are the parts of the  

brain associated with particular  
words?

11

Figure from
 Tom

 M
itchell

©2017 Kevin Jamieson

bwLS = argmin
w

nX

i=1

�
yi � x

T
i w

�2

Sparsity
■ Vector w is sparse, if many entries are zero

■ Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
■ If part of an online system, too slow
■ If w is sparse, prediction computation only depends on number of non-zeros

Interpretability: What are the  
relevant dimension to make a  
prediction?
■ E.g., what are the parts of the  

brain associated with particular  
words?

12

Figure from
 Tom

 M
itchell

©2017 Kevin Jamieson

bwLS = argmin
w

nX

i=1

�
yi � x

T
i w

�2

■ How do we find “best”
subset among all possible?

Greedy model selection algorithm

■ Pick a dictionary of features
e.g., cosines of random inner products

■ Greedy heuristic:
Start from empty (or simple) set of features F0 = ∅
Run learning algorithm for current set of features Ft
■ Obtain weights for these features

Select next best feature hi(x)*

■ e.g., hj(x) that results in lowest training error learner when
using Ft + {hj(x)*}

Ft+1 ! Ft + {hi(x)*}
Recurse

13©2017 Kevin Jamieson

Greedy model selection

■ Applicable in many other settings:
Considered later in the course:
■ Logistic regression: Selecting features (basis functions)
■ Naïve Bayes: Selecting (independent) features P(Xi|Y)
■ Decision trees: Selecting leaves to expand

■ Only a heuristic!
Finding the best set of k features is computationally
intractable!
Sometimes you can prove something strong about it…

14©2017 Kevin Jamieson

 When do we stop???

■ Greedy heuristic:
…
Select next best feature Xi

*
■ E.g. hj(x) that results in lowest training error

learner when using Ft + {hj(x)*}

Recurse When do you stop???
■ When training error is low enough?
■ When test set error is low enough?
■ Using cross validation?

15©2017 Kevin Jamieson

Is there a more principled approach?

Recall Ridge Regression

16

■ Ridge Regression objective: 
 
 
 
 
 
 

©2017 Kevin Jamieson

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � x

T
i w

�2
+ �||w||22

Ridge vs. Lasso Regression

17

■ Ridge Regression objective: 
 
 
 
 
 
 

■ Lasso Ridge objective:

©2017 Kevin Jamieson

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � x

T
i w

�2
+ �||w||22

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bw
lasso

= argmin
w

nX

i=1

�
y

i

� x

T

i

w

�2
+ �||w||1

Penalized Least Squares

18©2017 Kevin Jamieson

bwr = argmin
w

nX

i=1

�
yi � x

T
i w

�2
+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

Penalized Least Squares

19©2017 Kevin Jamieson

bwr = argmin
w

nX

i=1

�
yi � x

T
i w

�2
+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

For any � � 0 for which bwr achieves the minimum, there exists a ⌫ � 0 such that

bwr = argmin
w

nX

i=1

�
yi � x

T
i w

�2
subject to r(�) ⌫

Penalized Least Squares

20©2017 Kevin Jamieson

bwr = argmin
w

nX

i=1

�
yi � x

T
i w

�2
+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

For any � � 0 for which bwr achieves the minimum, there exists a ⌫ � 0 such that

bwr = argmin
w

nX

i=1

�
yi � x

T
i w

�2
subject to r(�) ⌫

Optimizing the LASSO Objective
■ LASSO solution:

21©2017 Kevin Jamieson

bw
lasso

,

b
b

lasso

= argmin
w,b

nX

i=1

�
y

i

� (xT

i

w + b)
�2

+ �||w||1

b
b

lasso

= argmin
w,b

1

n

nX

i=1

�
y

i

� x

T

i

bw
lasso

)
�

Optimizing the LASSO Objective
■ LASSO solution:

22©2017 Kevin Jamieson

bw
lasso

,

b
b

lasso

= argmin
w,b

nX

i=1

�
y

i

� (xT

i

w + b)
�2

+ �||w||1

b
b

lasso

= argmin
w,b

1

n

nX

i=1

�
y

i

� x

T

i

bw
lasso

)
�

So as usual, preprocess to make sure that

1

n

nX

i=1

yi = 0,

1

n

nX

i=1

xi = 0

so we don’t have to worry about an o↵set.

Optimizing the LASSO Objective
■ LASSO solution:

23©2017 Kevin Jamieson

bw
lasso

,

b
b

lasso

= argmin
w,b

nX

i=1

�
y

i

� (xT

i

w + b)
�2

+ �||w||1

b
b

lasso

= argmin
w,b

1

n

nX

i=1

�
y

i

� x

T

i

bw
lasso

)
�

So as usual, preprocess to make sure that

1

n

nX

i=1

yi = 0,

1

n

nX

i=1

xi = 0

so we don’t have to worry about an o↵set.

bw
lasso

= argmin
w

nX

i=1

�
y

i

� x

T

i

w

�2
+ �||w||1

How do we solve this?

Coordinate Descent
■ Given a function, we want to find minimum

■ Often, it is easy to find minimum along a single coordinate:

■ How do we pick next coordinate?

■ Super useful approach for *many* problems
Converges to optimum in some cases, such as LASSO

24©2017 Kevin Jamieson

Optimizing LASSO Objective  
One Coordinate at a Time

25©2017 Kevin Jamieson

=
nX

i=1

yi �

dX

k=1

xi,k wk

!2

+ �

dX

k=1

|wk|
nX

i=1

�
yi � x

T
i w

�2
+ �||w||1

=
nX

i=1

0

@
⇣
yi �

X

k 6=j

xi,k wk

⌘
� xi,j wj

1

A
2

+ �

X

k 6=j

|wk|+ �|wj |

bwj = argmin
wj

nX

i=1

⇣
r

(j)
i � xi,j wj

⌘2
+ �|wj |

Equivalently:

x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2
f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y) �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

Convex Functions

■ Equivalent definitions of convexity: 
 
 
 
 
 
 
 
 

■ Gradients lower bound convex functions and are unique at x iff
function differentiable at x

■ Subgradients generalize gradients to non-differentiable points:
Any supporting hyperplane at x that lower bounds entire function

26©2017 Kevin Jamieson

g is a subgradient at x if f(y) � f(x) + g

T (y � x)

Taking the Subgradient

■ Convex function is minimized at w if 0 is a sub-gradient at w.

27©2017 Kevin Jamieson

@wj |wj | =

bwj = argmin
wj

nX

i=1

⇣
r

(j)
i � xi,j wj

⌘2
+ �|wj |

@wj

nX

i=1

⇣
r

(j)
i � xi,j wj

⌘2
=

Setting Subgradient to 0

28©2017 Kevin Jamieson

bwj = argmin
wj

nX

i=1

⇣
r

(j)
i � xi,j wj

⌘2
+ �|wj |

@wj

nX

i=1

⇣
r

(j)
i � xi,j wj

⌘2
+ �|wj |

!
=

8
><

>:

ajwj � cj � � if wj < 0

[�cj � �,�cj + �] if wj = 0

ajwj � cj + � if wj > 0

aj = (
nX

i=1

x

2
i,j) cj = 2(

nX

i=1

r

(j)
i xi,j)

bwj =

8
><

>:

(cj + �)/aj if cj < ��

0 if |cj | �

(cj � �)/aj if cj > �

Soft Thresholding

29

From  
Kevin Murphy
textbook

©2017 Kevin Jamieson

cj = 2
nX

i=1

⇣
yi �

X

k 6=j

xi,k wk

⌘
xi,jaj =

nX

i=1

x

2
i,j

bwj =

8
><

>:

(cj + �)/aj if cj < ��

0 if |cj | �

(cj � �)/aj if cj > �

Coordinate Descent for LASSO  
(aka Shooting Algorithm)

■ Repeat until convergence
Pick a coordinate l at (random or sequentially)
■ Set:

■ Where:

For convergence rates, see Shalev-Shwartz and Tewari 2009
■ Other common technique = LARS

Least angle regression and shrinkage, Efron et al. 2004
30©2017 Kevin Jamieson

cj = 2
nX

i=1

⇣
yi �

X

k 6=j

xi,k wk

⌘
xi,jaj =

nX

i=1

x

2
i,j

bwj =

8
><

>:

(cj + �)/aj if cj < ��

0 if |cj | �

(cj � �)/aj if cj > �

Recall: Ridge Coefficient Path

■ Typical approach: select λ using cross validation

31

From  
Kevin Murphy
textbook

©2017 Kevin Jamieson

Now: LASSO Coefficient Path

32

From  
Kevin Murphy
textbook

©2017 Kevin Jamieson

What you need to know

■ Variable Selection: find a sparse solution to learning
problem

■ L1 regularization is one way to do variable selection
Applies beyond regression
Hundreds of other approaches out there

■ LASSO objective non-differentiable, but convex ➔ Use
subgradient

■ No closed-form solution for minimization ➔ Use
coordinate descent

■ Shooting algorithm is simple approach for solving LASSO

33©2017 Kevin Jamieson

©Kevin Jamieson 2017
34

Classification 
Logistic Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 12, 2016

©Kevin Jamieson 2017

THUS FAR, REGRESSION:  
PREDICT A CONTINUOUS VALUE GIVEN
SOME INPUTS

35

©Kevin Jamieson 2017

Weather prediction revisted

36

Temperature

©Kevin Jamieson 2017

Reading Your Brain, Simple Example

AnimalPerson

Pairwise classification accuracy: 85%
[Mitchell et al.]

37

©Kevin Jamieson 2017

Classification

■ Learn: f:X —>Y
X – features
Y – target classes

■ Conditional probability: P(Y|X)

■ Suppose you know P(Y|X) exactly, how should
you classify?

Bayes optimal classifier:

■ How do we estimate P(Y|X)?
38

©Kevin Jamieson 2017

Link Functions

■ Estimating P(Y|X): Why not use standard linear
regression?

■ Combining regression and probability?
Need a mapping from real values to [0,1]
A link function!

39

©Kevin Jamieson 2017

Logistic Regression
Logistic
function
(or Sigmoid):

■ Learn P(Y|X) directly
Assume a particular functional form for link
function
Sigmoid applied to a linear function of the input
features:

Z

Features can be discrete or continuous!
40

©Kevin Jamieson 2017

Understanding the sigmoid

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0=0, w1=-1

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0=-2, w1=-1

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0=0, w1=-0.5

41

©Kevin Jamieson 2017

Very convenient!

implies

42

0

1

©Kevin Jamieson 2017

Very convenient!

implies

43

0

1

implies

0

1

implies

linear
classification

rule!

0

1

©Kevin Jamieson 2017

Logistic Regression –  
a Linear classifier

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

44

©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

45

P (Y = 1|x,w) = exp(w

T
x)

1 + exp(w

T
x)

P (Y = �1|x,w) = 1

1 + exp(w

T
x)

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y w

T
x)

■ This is equivalent to:

■ So we can compute the maximum likelihood estimator:

bwMLE = argmax

w

nY

i=1

P (yi|xi, w)

©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

46

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y w

T
x)

bwMLE = argmax

w

nY

i=1

P (yi|xi, w)

©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

47

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y w

T
x)

bwMLE = argmax

w

nY

i=1

P (yi|xi, w)

= argmin

w

nX

i=1

log(1 + exp(�yi x
T
i w))

©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

48

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y w

T
x)

bwMLE = argmax

w

nY

i=1

P (yi|xi, w)

= argmin

w

nX

i=1

log(1 + exp(�yi x
T
i w))

Logistic Loss: `i(w) = log(1 + exp(�yi x
T
i w))

Squared error Loss: `i(w) = (yi � x

T
i w)

2 (MLE for Gaussian noise)

©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

49

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y w

T
x)

bwMLE = argmax

w

nY

i=1

P (yi|xi, w)

= argmin

w

nX

i=1

log(1 + exp(�yi x
T
i w))= J(w)

What does J(w) look like? Is it convex?

©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

50

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y w

T
x)

bwMLE = argmax

w

nY

i=1

P (yi|xi, w)

= argmin

w

nX

i=1

log(1 + exp(�yi x
T
i w))= J(w)

Good news: J(w) is convex function of w, no local optima problems

Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize (next time)

©Kevin Jamieson 2017 51

Linear Separability

= argmin

w

nX

i=1

log(1 + exp(�yi x
T
i w)) When is this loss small?

©Kevin Jamieson 2017 52

Large parameters → Overfitting

■ If data is linearly separable, weights go to infinity

In general, leads to overfitting:
■ Penalizing high weights can prevent overfitting…

©Kevin Jamieson 2017

Regularized Conditional Log Likelihood

■ Add regularization penalty, e.g., L2:

■ Practical note about w0:

53

argmin

w

nX

i=1

log(1 + exp(�yi x
T
i w)) + �||w||22

