Announcements

HW 3 will be posted tonight or tomorrow. DUE 11/2

Classification Logistic Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 16, 2016

THUS FAR, REGRESSION: PREDICT A CONTINUOUS VALUE GIVEN SOME INPUTS

Weather prediction revisted

.

Reading Your Brain, Simple Example

Pairwise classification accuracy: 85\%

[Mitchell et al.]

Person

Classification

- Learn: f:X $->Y$
$\square \mathbf{X}$ - features
\square Y - target classes
- Conditional probability: $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$
- Suppose you know $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ exactly, how should you classify?

Bayes optimal classifier:

- How do we estimate $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$?

Link Functions

- Estimating $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$: Why not use standard linear regression?
- Combining regression and probability?
\square Need a mapping from real values to $[0,1]$
A link function!

Logistic Regression
Logistic

Learn $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$ directly

- Assume a particular functional form for link function
Sigmoid applied to a linear function of the input features:

$$
P(Y=0 \mid X, W)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}
$$

Understanding the sigmoid

$$
g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{w_{0}+\sum_{i} w_{i} x_{i}}}
$$

$w_{0}=-2, w_{1}=-1$
$w_{0}=0, w_{1}=-1$
$w_{0}=0, w_{1}=-0.5$

Very convenient!

$$
P\left(Y=0\left\llcorner\mid X=<X_{1}, \ldots X_{n}>\right)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}\right.
$$

implies
$\left.P(Y=1) \mid X=<X_{1}, \ldots X_{n}>\right)=\frac{\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}$

Very convenient!

$$
P\left(Y=0 ᄂ \mid X=<X_{1}, \ldots X_{n}>\right)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}
$$

implies

$$
\left.P(Y=1) \mid X=<X_{1}, \ldots X_{n}>\right)=\frac{\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}
$$

implies

$$
\frac{P(Y=1 \| X)}{P(Y=0 . \mid X)}=\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)
$$

linear classification rule!

$$
\ln \frac{\left.P\left(Y={ }^{1}\right) \mid X\right)}{P(Y=0 \backslash \mid X)}=w_{0}+\sum_{i} w_{i} X_{i}
$$

Logistic Regression a Linear classifier

$$
\frac{1}{1+\exp (-z)}
$$

$$
\begin{gathered}
g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{w_{0}+\sum_{i} w_{i} x_{i}}} \\
\ln \frac{P(Y=0 \mid X)}{P(Y=1 \mid X)}=w_{0}+\sum_{i} w_{i} X_{i}
\end{gathered}
$$

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
P(Y=-1 \mid x, w) & =\frac{1}{1+\exp \left(w^{T} x\right)} \\
P(Y=1 \mid x, w) & =\frac{\exp \left(w^{T} x\right)}{1+\exp \left(w^{T} x\right)}
\end{aligned}
$$

- This is equivalent to:

$$
P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)}
$$

- So we can compute the maximum likelihood estimator:

$$
\widehat{w}_{M L E}=\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right)
$$

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\widehat{w}_{M L E}=\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)}
$$

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned}
$$

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned}
$$

Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2} \quad$ (MLE for Gaussian noise)

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)=J(w)
\end{aligned}
$$

What does $J(w)$ look like? Is it convex?

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)=J(w)
\end{aligned}
$$

Good news: $J(\mathbf{w})$ is convex function of \mathbf{w}, no local optima problems Bad news: no closed-form solution to maximize $J(\mathbf{w})$

Good news: convex functions easy to optimize (next time)

Linear Separability

$$
\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right) \quad \text { When is this loss small? }
$$

Large parameters \rightarrow Overfitting

- If data is linearly separable, weights go to infinity
\square In general, leads to overfitting:
- Penalizing high weights can prevent overfitting...

Regularized Conditional Log Likelihood

- Add regularization penalty, e.g., L_{2} :

$$
\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)+\lambda\|w\|_{2}^{2}
$$

- Practical note about w_{0} :

Gradient Descent

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 16, 2016

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

g is a subgradient at x if

$$
f(y) \geq f(x)+g^{T}(y-x)
$$

f convex:

$$
\begin{array}{ll}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) & \forall x, y, \lambda \in[0,1] \\
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) & \forall x, y
\end{array}
$$

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

Least squares

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$
How does software solve: $\quad \frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

Least squares

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$
How does software solve: $\quad \frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$
...its complicated: (LAPACK, BLAS, MKL...)

Do you need high precision?
Is X column/row sparse?
Is $\widehat{w}_{L S}$ sparse?
Is $\mathrm{X}^{T} \mathrm{X}$ "well-conditioned"?
Can $\mathrm{X}^{T} \mathrm{X}$ fit in cache/memory?

Taylor Series Approximation

- Taylor series in one dimension:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{1}{2} f^{\prime \prime}(x) \delta^{2}+\ldots
$$

- Gradient descent:

Taylor Series Approximation

- Taylor series in d dimensions:

$$
f(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v+\ldots
$$

- Gradient descent:

Gradient Descent $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \\
& \nabla f(w)=
\end{aligned}
$$

Gradient Descent $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
w_{t+1}=w_{t} & -\eta \nabla f\left(w_{t}\right) \\
\left(w_{t+1}-w_{*}\right) & =\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)\left(w_{t}-w_{*}\right) \\
& =\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)^{t+1}\left(w_{0}-w_{*}\right)
\end{aligned}
$$

Example: $\quad \mathrm{X}=\left[\begin{array}{cc}10^{-3} & 0 \\ 0 & 1\end{array}\right] \quad \mathrm{y}=\left[\begin{array}{c}10^{-3} \\ 1\end{array}\right] \quad w_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad w_{*}=$

Taylor Series Approximation

- Taylor series in one dimension:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{1}{2} f^{\prime \prime}(x) \delta^{2}+\ldots
$$

- Newton's method:

Taylor Series Approximation

- Taylor series in d dimensions:

$$
f(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v+\ldots
$$

- Newton's method:

Newton's Method $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$\nabla f(w)=$
$\nabla^{2} f(w)=$
v_{t} is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$

$$
w_{t+1}=w_{t}+\eta v_{t}
$$

Newton's Method

$$
f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}
$$

$$
\begin{aligned}
& \nabla f(w)=\mathrm{X}^{T}(\mathrm{X} w-\mathrm{y}) \\
& \nabla^{2} f(w)=\mathrm{X}^{T} \mathrm{X}
\end{aligned}
$$

$$
v_{t} \text { is solution to : } \nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)
$$

$$
w_{t+1}=w_{t}+\eta v_{t}
$$

For quadratics, Newton's method converges in one step! (Not a surprise, why?)

$$
w_{1}=w_{0}-\eta\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \mathrm{X}^{T}\left(\mathrm{X} w_{0}-y\right)=w_{*}
$$

General case

In general for Newton's method to achieve $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$:

So why are ML problems overwhelmingly solved by gradient methods?
Hint: v_{t} is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$

General Convex case $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$

Newton's method:

$$
t \approx \log (\log (1 / \epsilon))
$$

Gradient descent:

- f is smooth and strongly convex: $a I \preceq \nabla^{2} f(w:) \preceq b I$
- f is smooth: $\nabla^{2} f(w) \preceq b I$
- f is potentially non-differentiable: $\|\nabla f(w)\|_{2} \leq c$

Nocedal +Wright, Bubeck

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,...

Revisiting... Logistic Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 16, 2016

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
f(w) & =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned}
$$

$\nabla f(w)=$

